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Our next example is the wave equation. So, the wave equation is the simplest example of a

hyperbolic differential equation of second order so, if , and t is the time variable than the𝑥 ∈ ℝ𝑁

wave equation. So, if so, and t equals time so, if then models waves in𝑁 = 1 𝑥 ∈ ℝ𝑁 𝑁 = 1

strings or pipes.

If it waves on the surface of water and if you have waves in optics acoustics, et𝑁 = 2 𝑁 = 3

cetera. So, again so, what is equation you have

∂2𝑢

∂𝑡2 (𝑥, 𝑡) − ∆𝑢(𝑥, 𝑡) = 0    𝑖𝑛  Ω × (0, ∞)

𝑢(𝑥, 𝑡) = 0  𝑜𝑛  Γ × (0, ∞),

𝑢(𝑥, 0) = 𝑓(𝑥)   𝑓𝑜𝑟  𝑥 ∈ Ω,

∂𝑢
∂𝑡 (𝑥, 0) = 𝑔(𝑥)   𝑓𝑜𝑟   𝑥 ∈ Ω,



And Laplace is again the boundary thing and if you have you may have boundary conditions if

this setting.
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So, we once again will look at the existence of and uniqueness, et cetera the solution of the wave

equation using the theory of semi groups. So, we have the following theorem. So,

Theorem: bounded open set of class we are assuming maximum so, as weΩ ⊂ ℝ𝑁 𝐶∞

do not have to worry about various things will have in of regularity.



So, then there exists a unique solution of𝑓 ∈ 𝐻2(Ω) ∩ 𝐻1
0
(Ω) 𝑎𝑛𝑑 𝑔 ∈ 𝐻1

0
(Ω)

∂2𝑢

∂𝑡2 (𝑥, 𝑡) − ∆𝑢(𝑥, 𝑡) = 0    𝑖𝑛  Ω × (0, ∞)

𝑢(𝑥, 𝑡) = 0  𝑜𝑛  Γ × (0, ∞),

𝑢(𝑥, 0) = 𝑓(𝑥)   𝑓𝑜𝑟  𝑥 ∈ Ω,

∂𝑢
∂𝑡 (𝑥, 0) = 𝑔(𝑥)   𝑓𝑜𝑟   𝑥 ∈ Ω.

So, this is our basic equation such that

Further for all t𝑢 ∈ 𝐶([0, ∞); 𝐻2(Ω) ∩ 𝐻1
0
(Ω)) ∩ 𝐶([0, ∞); 𝐻1

0
(Ω)) ∩ 𝐶2([0, ∞); 𝐿2(Ω)).

greater than 0

∂𝑢
∂𝑡 (., 𝑡)|| ||

2

0,Ω
+ |𝑢(., 𝑡)|2

1,Ω
= |𝑔|2

0,Ω
+ |𝑓|2

1,Ω
.

Then if in addition for all positive integers k and on we have𝑓, 𝑔 ∈ 𝐻𝑘(Ω) Γ

𝑓 = ∆𝑓 =  ...  = ∆𝑗𝑓 =  ...  = 0,    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ≥ 1,

𝑔 = ∆𝑔 =  ...  = ∆𝑗𝑔 =  ...  = 0,    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ≥ 1,

then . So, this is the sub proof.𝑢 ∈ 𝐶(Ω × [0, ∞))
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Proof:

So, is bounded so, by Poincare’s inequality we can consider the inner productΩ

(𝑢, 𝑣) =
Ω
∫ ∇𝑢. ∇𝑣  𝑑𝑥.

in . So, now we said so, the inner product so, now𝐻1
0
(Ω) 𝑉 = 𝐻1

0
(Ω) × 𝐿2(Ω)

(𝑢, 𝑣) =
Ω
∫ ∇𝑢

1
. ∇𝑣

1
  𝑑𝑥 +

Ω
∫ ∇𝑢

1
. ∇𝑣

2
  𝑑𝑥.

So, the first components will be in .𝐻1
0
(Ω)

So, now we set then star can be written as du by dt minus v equal to 0 and dv by dt𝑣 = ∂𝑢
∂𝑡

minus Laplacian u equal to 0 so, the standard thing if you have a second order the equation you

write it as a system of first order equations this is a standard technique which we have.
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So, now we will look at for the first component cross𝐷(𝐴) = (𝐻2(Ω) ∩ 𝐻1
0
(Ω)) × 𝐻1

0
(Ω)

and for any in D(A) we will define𝐻1
0
(Ω) 𝑢 = (𝑢

1
, 𝑢

2
)

𝐴𝑈 = (𝑣, ∆𝑢),   𝑈 = (𝑢, 𝑣) ∈ 𝐷(𝐴).

So, this will be this will be and therefore, the disk space V.𝐻1
0
(Ω) 𝐿2(Ω)

So, this belong to . So, this is well defined and now you can star is the𝐻1
0
(Ω) × 𝐿2(Ω) = 𝑉

same as saying that dashed of t is equal to that is a double star. You have d by dt of uv that𝑈 𝐴𝑈



is dashed of t and then you have minus of equals . So, if you take the other side v delta𝑈 𝐴𝑈(𝑡)

u, v delta u is nothing but the .𝐴𝑈

So, now and then you of 0 is nothing but fg and you call we put f and g we said f is𝑈 = (𝑢, 𝑣)

in and and and therefore, that belongs to . And then𝐻2
0
(Ω) ⋂ 𝐻2 (Ω) 𝐻1

0
(Ω) 𝑔 ∈ 𝐻1

0
(Ω) 𝐷(𝐴)

if u is in so, then what is𝐷(𝐴) 𝑈 = (𝑢, 𝑣)

(𝐴𝑈, 𝑈) =
Ω
∫ ∇𝑣. ∇𝑢 𝑑𝑥 +

Ω
∫(∆𝑢)𝑣  𝑑𝑥 = 0.

but then this u is in in so, this is equal to minus integral on omega grad u dot𝐻2 (Ω) 𝐻1
0
(Ω)

grad v there are no boundary terms and therefore, this is equal to 0.
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Now, you let and you consider . So, what is the t equation so, I uℎ = (ℎ
1
, ℎ

2
) (𝐼 − 𝐴)𝑢 = ℎ

minus v equals and you have v minus delta u equals and u belong to in sectionsℎ
1

ℎ
2

𝐻2 (Ω)

and you want v in . So, does that exist uv such that you have this.𝐻1
0
(Ω) 𝐻1

0
(Ω)



So, if you add these two equations you get

𝑢 − ∆𝑢 = ℎ
1

+ ℎ
2
.

and that belongs to . So, then there implies there exists unique u in solution and𝐿2(Ω) 𝐻1
0
(Ω)

regularity implies u is in so there exists u in such that )𝐻2 (Ω) 𝐻2 (Ω) ∩ 𝐻1
0
(Ω)

and now you said v equal to u minus which will belong to .𝑢 − ∆𝑢 = ℎ
1

+ ℎ
2
. ℎ

1
𝐻1

0
(Ω)

So, remember this is belongs to . So, this belongs andℎ = (ℎ
1
, ℎ

2
) 𝐻1

0
(Ω) × 𝐿2(Ω) 𝐻1

0
(Ω)

therefore we have that u v belongs to and you have . And similarly I plus𝐷(𝐴) 𝐼 − 𝐴(𝑈) = 𝑣

u equal to h you can check this also has a unique solution.
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So, this means that and are maximum dissipate and together generate group of isometries.𝐴 − 𝐴

So, if u naught belongs to then there exists a unique solution and regularity v will be du by𝐷(𝐴)

dt and regularity follows from the abstract theory after the Helio sida theorem we saw that if you

is in then u naught is in then it is all that.𝐷(𝐴𝑘) 𝐷(𝐴𝑘)

So, you notice that what is



here the set of all such that u is in v is in and delta j of u𝐷(𝐴𝑘) (𝑢, 𝑣) ∈ 𝑉 𝐻𝑘+1(Ω), 𝐻𝑘(Ω)

equal to 0 in less than equal to j less than equal to the integral part of k by 2 and delta j of vΓ
0

equals 0 on less than equal to j less than equal to k plus 1 by 2 integral part minus 1.Γ
0

This requires some checking, but then one can show this. So, then so given the conditions you

have here now, the fact that you have an isometry tells you that you have the conservation law

which I wrote down this comes from the fact that you have an isometry. So, that is just initial

they are all (())(16:31) are all isometries and therefore, we have the theorem and the result

follows.
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So,

Remark: necessary since and that implies that on𝑔 = 0,   𝑜𝑛 Γ
0

𝑢 = 0 𝑜𝑛 Γ
0

∂𝑢
∂𝑡 = 0

for all t this is true and therefore, this implies so, this means that g must also be 0 on gammaΓ

and then this relationship dagger is called conservation of energy and then remark again

Remark: since we have a group of isometries we can solve the backward problem

namely



∂𝑈
∂𝑡 = 𝐴𝑈,   𝑖𝑛 (0, 𝑇),

𝑈(𝑇) = 𝑈
𝑇

in D assuming it is in and therefore, this problem has a solution and since you have a group𝐷(𝐴)

of a isometries. So, simulation we do not since we have a group and like the heat equation where

you could not solve it backwards here you can solve it backwards.
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So, now just we saw in the case of the heat equation let us take omega to be . So, we haveℝ𝑁

∂2𝑢

∂𝑡2 (𝑥, 𝑡) − ∆𝑢(𝑥, 𝑡) = 0    𝑖𝑛  ℝ𝑁 × (0, ∞)

𝑢(𝑥, 0) = 𝑓(𝑥)   𝑓𝑜𝑟  𝑥 ∈ ℝ𝑁,

∂𝑢
∂𝑡 (𝑥, 0) = 𝑔(𝑥)   𝑓𝑜𝑟   𝑥 ∈ ℝ𝑁.

So, now let us I will concentrate on the case .𝑁 = 1

So, if you will have

∂2𝑢

∂𝑡2 − ∂2𝑢

∂𝑥2 = 0

So, then if you put and said you get𝑥 + 𝑡 = ξ 𝑥 − 𝑡 = η

∂2𝑢

∂ξ∂η
= 0

this implies that 𝑢(𝑥, 𝑡) = 𝐹(ξ) + 𝐺(η),   𝑠𝑜

𝑢(𝑥, 𝑡) = 𝐹(𝑥 + 𝑡) + 𝐺(𝑥 − 𝑡).



And now if you impose the initial conditions implies we have the d Alembert’s solution

𝑢(𝑥, 𝑡) = 1
2 𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)( ) + 1

2
𝑥−𝑡

𝑥+𝑡

∫ 𝑔(ξ) 𝑑ξ

so, this is the solution. So, in the one dimensional case we can immediately see that wave

equation has no smoothing effect for instance.

If you take g equal to 0 then you get So, the solution is𝑢(𝑥, 𝑡) = 1
2 𝑓(𝑥 + 𝑡) + 𝑓(𝑥 − 𝑡)( )

only as smooth as f it is not various in the heat equation instantaneously it became a function𝐶∞

here if you have this solution does not change at all and also assume f belongs to C infinity on

then the same place u is except on the lines So,𝐶∞(ℝ\{0}) 𝐶∞(ℝ2) 𝑥 − 𝑡 = 0 𝑎𝑛𝑑 𝑥 + 𝑡 = 0.

these are called the characteristic curves so, you have here x and here you have t and then you

have a point x naught 0 and then you have these lines here x plus t equal to con and𝑥 − 𝑡 = 𝑥
0

these are the constant lines. So, if you have a singularity at this point the singularity𝑥 + 𝑡 = 𝑥
0

will persist on these things this are called the characteristic curves. So, singularities propagate

along characteristic curves.
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Another important difference between the wave equation and the heat equation is finite speed of

propagation of signals. So, this function if you have unlike the thing so, o of xt depends only on

the values of . So, if you look at the formula you can see that immediately𝑓, 𝑔 ∈ [𝑥 − 𝑡,  𝑥 + 𝑡]

it depends on the values of f at , and g on the now nothing else𝑥 + 𝑡 𝑥 − 𝑡 [𝑥 − 𝑡,  𝑥 + 𝑡]

depends.

So, this is called the domain of dependence. So, if you have x and t and you have a point x t here,

then you draw the characteristic curves which pass through these points. So, this will be 𝑥 − 𝑡

and this will be x plus t and then this is called the domain of dependence then if f and g how

compact support this implies it also has compact support though the support expands with𝑢(𝑥, 𝑡)

t.

So, if you had for instance f and g are confined supported here, then you will have to take the

characteristic curves coming. So, will be nonzero only in this region, but that keeps𝑢(𝑥, 𝑡)

expanding and therefore, you will have the solution. Now, one can write down explicitly the

solution in N equals 3.

So, this is called the method of spherical means. And for this is called the𝑁 = 2

Hadamarad method of descent which means you write it for and then you𝑁 = 3

restrict it to the case where it is only two dimensional and one can study the properties

of this solution of the wave equation. These are described in the book topics in

functional analysis you can take a look and more or less the essential properties we

have discussed already here. And so, one can wind up this section with that


