Sobolev Spaces and Partial Differential Equations
Professor S Kesavan
Department of Mathematics
Institute of Mathematical Science
Lecture 80
Self-Adjoint Case and the Case of Isometries
So, we were looking at contraction semigroups in Hilbert spaces. And we found that the
infinitesimal generators were precisely the maximal dissipative operators. After this we said two

important classes and the first one we were looking at is when the case when A the infinite

decimal generator was also self adjoint.
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So, here is the very nice theorem which we prove. So,

Theorem: let V be a real Hilbert space. Let A be maximal dissipative self-adjoint

operator on V. Then given u 0 € V there exists a unique solution to the initial value problem

u'(t) = Au(t)

u(o) = U

such that u € C([0,): V) N Cl((O, 00); V) N C((0, o); D(A)). Further for all t > 0, we have

[lu@®Il = [lul| and

lu @ = 1|Au@] < =l

So, this is the theorem. So, the important thing to note is that so far we have been saying we can
solve this initial value problem provided the initial data is in the domain of A. Then otherwise we
called it a generalized solution. But then here we in the self-adjoint maximal dissipative case in a

Hilbert space you can solve the problem classically even for any data in the entire space.

The only price you pay for that is that you lose continuity at t equal to 0 that was the only

difference. Previously we had C 1[0, o) with values in C [0, ) with values in D(A). But now



we have C [0, o) values in v but C 1(0, o) with values in v and C (0, o) with values in D(A).

Obviously at 0 it is not in D(A) necessarily.

So, this is a very beautiful result namely you can solve for any initial data irrespective you do not
have to worry about it being in the domain. And you lose continuity at t equal to 0 which is not a

big deal. So,
Proof.

Step-1:So, first step is uniqueness. So, let uland u, be two solutions. And you write

2
o) = I, (®) — O
Then @(t) = 0, @(0) = 0. Because the initial value is the same.

And also, you have that
u, (t) — uz(t) = A(ul(t) — uz(t)).

. Now, you take the inner product with the u | T u,s0 that will be

F0 0 = AQ,® ~u,O) u,® ~u,® <0

And that by the maximal by the dissipativity is less than or equal to 0. So, ¢ is non zero
©(0) = 0 and @ is decreasing because norm of d by dt is less than or equal to 0. So, this implies

that ¢ = 0. That is ul(t) = uz(t) for all t positive. So, that proves the uniqueness of the

solution in this case.
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Step 2. Let u, € D(AZ). So, we are going we said we are going to prove things in for

. 2 D . .
u, € V. But we start with u, € D(A") which is very very smooth. So, that solution exists

classical sense that means that even you have even continuity the origin much more than that. So,
{S(t)} greater or equals 0 semigroup of contractions is generated by A then of course you know

that u(t) is nothing but S(t)u 0

So, A}\ Yosida approximation of AA positive. Then you have let us take
u, (t) = A}\u}\(t), t >0, ux(O) =u,

Then we have seen that of course ux(t) goes to u (t). And also, u, dashed of t goes to u dashed

of t. This was one of the last theorem which we proved when in the general Hille Yosida case

uniformly unbounded intervals as lambda tends to infinity.

Now, A)L € L(V). It is a bounded linear operator. And therefore, we can apply the theorem which

we proved the proposition which I proved last in the previous lecture namely. So, this implies

that norm of u, dash t and this is self-adjoint this also be proved. So, the norm of



' 1
llu, ©I1 <+l ¢ > o.

This we proved last time. So, this is of course you assume that your u is in u naught is in D(A)

square. So, now we have to do a density argument.

(Refer Slide Time: 8:26)

St&ig WV DD Dune N, DW) fone i Bt

DWE Dy VNV
=OD0") Rony 2 Van wadd

b EDEY) W U, LY
Lb:\)'(g\ _-A(.;\LK-SJ Li‘lb\:u_';’
M- Pyl g NG -dTW £ (Usnsd

W ey Al < _L_\\uf, AN e, S 2D

W S ule) gL QL () i Candy e G ey

=) w e (50)) N 830
(&%) ey —u® u.n:nﬁ O«K_S,D.) M3 7e

Y

L EDEY W sy, LV

iz Y
/

X
Slrx
o =
\%-
) S
YN 8
s
'S

S

W) A, Do)

)
’r

=z
]
-
m
-

Nlw - il g oG-t £30 (CETRON
WY ey aa™ ey < '\Em‘h’ WU re, SR D
WA Sl g i@i‘)‘ O Cm.:.‘»a_ e G inkovaly

—) uwy e (50)) N 370
(8 1ty — &) wnf o f30) ¥ 7

= ue clloay )0 <t (oayv)

i )
Step 3. So, we have u €V then D(A) dense in V and D(AZ) dense in D(A) this also

solve. So, now what is that we have D(A) has the graph norm therefore it is continuously



included in v and D(Az) is dense here. Therefore, by the continuity of this, this implies that

D(AZ) is dense in v as well. Consequently, let us take u On € D(A) square u On - u in V.

So, u't equals A of u tun0 equals u n 0. And then we know that norm of u n t minus u m t is

because you have a dissipative operator we know that the norm is always less than equal to the

initial value. So, you have uno minus u m 0 t greater or equal to 0. And norm of u" dash t minus

u m is again less than or equal to 1 by t times norm of u" 0 minusumO t positive. Now, the first
one is just comes from the fact you have this contraction semigroup and also s norm f't is less

than or equal to 1.

Norm of S tis less than equal to 1. And the second 1 comes from step 2. So, then you have that u
n t converges to u of t uniformly. Because there is uniformly Cauchy and u n dash t uniformly
Cauchy unbounded intervals. And therefore, you know if the derivative converges uniformly and

the function even converges at one point you know that limit of the should be differentiable and

it should be the limit of this implies that u of t is C ' of delta infinity for all delta positive. And u
of u n dash t goes to u dash t uniformly on delta infinity for all delta positive. So, what does this?

So, this implies that u of t where u belongs to C of 0 infinity with values in v intersection

Cl(O, o0) with values in V.
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So, now
Step 4: you have to show that u is the solution of the equation which we want. So,

u(0) = lim u" =u.
n— oo 0 0

that we know and {un(t)} and {Aun(t)} converge for t positive. This implies that u(t) belongs to

D(A) and {Aun(t)} - Au (t). But your {Aun(t)} =u" (t) and the t converges to u dash t.

Therefore, we have that u dash t equals Au(t) for all t positive u of t belongs to the domain of A.



And therefore, you have u belongs to C(0, ) with values in D(A). So, that proves on the

continuity properties that u is the solution we have produced a solution for the equation. So,
finally step 5. So, u" S(t) is a contraction semigroup. So, un(t) in norm is less than or equal to
the norm of un(O). And this implies that norm of u(t) is less than equal to norm of u o And for all

t greater equal to 0. And you have that
' 1
@) @I <+ llw, 1I-

And therefore, for if you pass to the limit that norm of u dash t is less than or equal to 1 by t
times norm of u(0) for all t positive. And this completes the proof of the step. So, we will

conclude the self-adjoint case that actually we have much more to say in this.
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So, the self-adjoint case is a very, very smooth, it is a regularizing effect. So, regularity result so
Theorem: Vreal Hilbert A maximal dissipative self-adjoint. Then if u solution of
u(t) = Au(t)

u(o) = U



Then u € Ck((O, ); D(Al)), forallk,1 > 0. So, this is really wonderful result I will not
prove it you can find the proof in the book topics in function analysis applications not a very

long proof but I do not want to get into it here.

And so, you see whatever however rough the initial data is namely it is just in v u I told you
D(A) is a space of very smooth functions. So, u belongs to D(A) 1 for any | so it is in fact like if

you think of Sobolev spaces this will be something by the Sobolev inclusion theorem something
like €. And in time also it is C_ as long as you do not go to the origin t equal to 0. So, it is

Ck(O, o) for all k. So, the solution is extremely smooth and in the case of the self-adjoint
operators. So, that is about self-adjoint case. So, now we will I will not as I send and give a proof

of this. So, let us save some time.

(Refer Slide Time: 17:34)

- 4

Comnz A & A s R meanld low.

oLl
Ay,

= Ay =2 N v N
Theo N Ribebse . ArDusevay ol bai g b Al -law

ol . dino %,%ﬁs&)% %wx o geo 4

Jr
e L Sl L s Gy by 2

Ly U, éD . Weov=8hw. i ez futts Fop

ue\=U,
N .
bl = (Auey, NOAES

L3
LR}
S SWak = w2 kol Y E N ueday

N WL Sy By eV =y NS =l 4 W€\




ol . o %,Jm%dsu«im% gpoeli o geg 4
JECIENETS
(i&’__! Lax S\S*&tﬂm Jaa. w @M.\%M(LS‘:A

Loy U, €D, Wy = Sty . éz}ce\:fkc&x)bu

u\=U,

NPTEL

< .
Lo lamiTs (e, om\ =s
b0
S ASWak = anil =kl ¥ E - Y ueddy
sl ) DM e eV = NSl =l g LEN

SA L) :kbw% ’v'b?,d-

So, now I want to go to so, now we want to look at the case when so, case 2 A and minus A are
both maximum dissipative. So, in this case you have (Av,v) = 0 and (Av, v) < 0 should also
be less than or equal to 0. Because my both A and minus A are dissipative that means this

(Av,v) = 0, Yv € D(A). So, now we have a theorem. So, this is a different kind of theorem.

Theorem: V Hilbert space real of course A: D(A) € V — V a linear operator. Such that A

and — A are maximal dissipative. Then together they generate a group of isometries. So,

Proof: so the norm of the solution will not change at all. So, that is why you have an

isometry. So, let us let {S Jr'_(t)}t20 be the semigroups contraction of course generated by plus or
minus A. So, let u, € D(A) and u(t) = 5" (tu,
So, then you have that

u(t) = Au(t)

u(o) = U



This is the solution to this equation. Now, norm of so, you take the scalar product of this
equation with u of t and then you get one half of d by dt norm u(t) square we have seen this

before A of u(t) u(t) and that is 0 and this means that norm of u t equals norm of u 0 for all t.

Now, this is true for all u naught D(A) but D(A) is dense in V and therefore this implies that
norm u(t). So, but what is norm of S(t) of u naught is this and this implies that norm of St of u
equal to norm u for all u in V. So, the norm of S(t) is less than or equal to 1. And D(A) is dense V
and therefore, you have this. And therefore, S plus t isometry for all t greater or equal to O for t

equals 0 it is just identity map.
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So, in the same way similarly, S (t) is the isometry for all t > 0. So, now let u t equals S(t) of u

naught. u naught in D(A) and you define v(t) equals u(t0 — t). For t belonging to O,t0 t naught is

some fixed. So, let t naught that is equal to 0. So, then you do this and then what do you get you
have that v dash t if you differentiate this is equal to minus u dash t naught means t which is
equal to minus A of u of t naught minus t by definition. And therefore, this is equal to minus A
of v(t). So, v dash t equals minus A of v(t). v(0) is equal to what? v(0) is equal to u of t naught.
This implies that v of t equals S(t) S minus t of u of t naught. And that is equal to S minus t of S

plus t a t naught of u 0.

So, in particular v(0) = u(to) = S+(t0)u0 but what is v of t naught v of t naught from the

definition is nothing but u of 0. So, this implies that
- +
S (tO)S (tO)uO = v(to) = u(0) = U
When all u naught in D(A) implies by density again for all u, € V. Similarly,
ST(t )S"(t Yu = u to the identity map.
Therefore, if u define. So, define

S@) =S, t=0,



S(t), t<o.

Then you have S(t )_1 = S(— t), t € R. And so, we have a group of isometries. So, in this
case we can solve the equations backwards and forwards. Because you have a group of
isometries and also you have a conservation property namely the norm of the initial value initial
data is preserved throughout the flow. So, these are the important properties of this. So, we have
these two particular cases. And now, our next aim is to give examples from partial differential

equations of these situations namely the self-adjoint and the case where you have a group of

1sometries.



