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Self-Adjoint Case and the Case of Isometries

So, we were looking at contraction semigroups in Hilbert spaces. And we found that the

infinitesimal generators were precisely the maximal dissipative operators. After this we said two

important classes and the first one we were looking at is when the case when the infinite𝐴

decimal generator was also self adjoint.
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So, here is the very nice theorem which we prove. So,

Theorem: let be a real Hilbert space. Let be maximal dissipative self-adjoint𝑉 𝐴

operator on . Then given there exists a unique solution to the initial value problem𝑉 𝑢
0

∈ 𝑉

𝑢'(𝑡) = 𝐴𝑢(𝑡)

𝑢(𝑜) = 𝑢
0
.

such that Further for all we have𝑢 ∈ 𝐶([0, ∞): 𝑉) ⋂ 𝐶1((0, ∞); 𝑉) ⋂ 𝐶((0, ∞); 𝐷(𝐴)). 𝑡 > 0,

and||𝑢(𝑡)|| ≤ ||𝑢
0
||

||𝑢'(𝑡)|| = ||𝐴𝑢(𝑡)|| ≤ 1
𝑡 ||𝑢

0
||.

So, this is the theorem. So, the important thing to note is that so far we have been saying we can

solve this initial value problem provided the initial data is in the domain of . Then otherwise we𝐴

called it a generalized solution. But then here we in the self-adjoint maximal dissipative case in a

Hilbert space you can solve the problem classically even for any data in the entire space.

The only price you pay for that is that you lose continuity at t equal to 0 that was the only

difference. Previously we had with values in with values in . But now𝐶1[0, ∞) 𝐶 [0, ∞) 𝐷(𝐴)



we have values in v but with values in v and with values in .𝐶 [0, ∞) 𝐶1(0, ∞) 𝐶 (0, ∞) 𝐷(𝐴)

Obviously at 0 it is not in necessarily.𝐷(𝐴)

So, this is a very beautiful result namely you can solve for any initial data irrespective you do not

have to worry about it being in the domain. And you lose continuity at t equal to 0 which is not a

big deal. So,

Proof.

Step-1:So, first step is uniqueness. So, let be two solutions. And you write𝑢
1
𝑎𝑛𝑑 𝑢

2

φ(𝑡) = ||𝑢
1
(𝑡) − 𝑢

2
(𝑡)||2.

Then . Because the initial value is the same.φ(𝑡) ≥ 0,   φ(0) = 0

And also, you have that

𝑢
1

'(𝑡) − 𝑢'
2
(𝑡) = 𝐴(𝑢

1
(𝑡) − 𝑢

2
(𝑡)).

. Now, you take the inner product with the so that will be𝑢
1

− 𝑢
2

1
2 φ'(𝑡) = (𝐴(𝑢

1
(𝑡) − 𝑢

2
(𝑡)),   𝑢

1
(𝑡) − 𝑢

2
(𝑡) ≤ 0

And that by the maximal by the dissipativity is less than or equal to 0. So, is non zeroφ

and is decreasing because norm of d by dt is less than or equal to 0. So, this impliesφ(0) = 0 φ

that . That is for all t positive. So, that proves the uniqueness of theφ = 0 𝑢
1
(𝑡) = 𝑢

2
(𝑡)

solution in this case.
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Step 2. Let . So, we are going we said we are going to prove things in for𝑢
0

∈ 𝐷(𝐴2)

. But we start with which is very very smooth. So, that solution exists𝑢
0

∈ 𝑉 𝑢
0

∈ 𝐷(𝐴2)

classical sense that means that even you have even continuity the origin much more than that. So,

greater or equals 0 semigroup of contractions is generated by A then of course you know{𝑆(𝑡)}

that u(t) is nothing but .𝑆(𝑡)𝑢
0

So, Yosida approximation of positive. Then you have let us take𝐴
λ

𝐴
λ

𝑢
λ

'(𝑡) = 𝐴
λ
𝑢

λ
(𝑡),   𝑡 > 0,   𝑢

λ
(0) = 𝑢

0
.

Then we have seen that of course goes to . And also, dashed of t goes to u dashed𝑢
λ
(𝑡) 𝑢 (𝑡) 𝑢

λ

of t. This was one of the last theorem which we proved when in the general Hille Yosida case

uniformly unbounded intervals as lambda tends to infinity.

Now, . It is a bounded linear operator. And therefore, we can apply the theorem which𝐴
λ

∈ 𝐿(𝑉)

we proved the proposition which I proved last in the previous lecture namely. So, this implies

that norm of dash t and this is self-adjoint this also be proved. So, the norm of𝑢
λ



||𝑢
λ

'(𝑡)|| ≤ 1
𝑡 ||𝑢

0
||,   𝑡 > 0.

This we proved last time. So, this is of course you assume that your u is in u naught is in 𝐷(𝐴)

square. So, now we have to do a density argument.
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Step 3. So, we have then dense in and dense in this also𝑢
0

∈ 𝑉 𝐷(𝐴) 𝑉 𝐷(𝐴2) 𝐷(𝐴)

solve. So, now what is that we have has the graph norm therefore it is continuously𝐷(𝐴)



included in v and is dense here. Therefore, by the continuity of this, this implies that𝐷(𝐴2)

is dense in v as well. Consequently, let us take square .𝐷(𝐴2) 𝑢
0

𝑛 ∈ 𝐷(𝐴) 𝑢
0

𝑛 → 𝑢
0
 𝑖𝑛  𝑉

So, t equals A of t u n 0 equals u n 0. And then we know that norm of u n t minus u m t is𝑢𝑛 𝑢𝑛

because you have a dissipative operator we know that the norm is always less than equal to the

initial value. So, you have minus u m 0 t greater or equal to 0. And norm of dash t minus𝑢𝑛
0

𝑢𝑛

u m is again less than or equal to 1 by t times norm of 0 minus u m 0 t positive. Now, the first𝑢𝑛

one is just comes from the fact you have this contraction semigroup and also s norm f t is less

than or equal to 1.

Norm of S t is less than equal to 1. And the second 1 comes from step 2. So, then you have that u

n t converges to u of t uniformly. Because there is uniformly Cauchy and u n dash t uniformly

Cauchy unbounded intervals. And therefore, you know if the derivative converges uniformly and

the function even converges at one point you know that limit of the should be differentiable and

it should be the limit of this implies that u of t is of delta infinity for all delta positive. And u𝐶1

of u n dash t goes to u dash t uniformly on delta infinity for all delta positive. So, what does this?

So, this implies that u of t where u belongs to C of 0 infinity with values in v intersection

with values in .𝐶1(0, ∞) 𝑉
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So, now

Step 4: you have to show that u is the solution of the equation which we want. So,

𝑢(0) =
𝑛 ∞
lim
→

𝑢𝑛
0

= 𝑢
0
.

that we know and and converge for t positive. This implies that belongs to{𝑢𝑛(𝑡)} {𝐴𝑢𝑛(𝑡)} 𝑢(𝑡)

and . But your and the t converges to u dash t.𝐷(𝐴) {𝐴𝑢𝑛(𝑡)} → 𝐴𝑢 (𝑡) {𝐴𝑢𝑛(𝑡)} = 𝑢𝑛'
(𝑡)

Therefore, we have that u dash t equals for all t positive u of t belongs to the domain of A.𝐴𝑢(𝑡)



And therefore, you have u belongs to with values in . So, that proves on the𝐶(0, ∞) 𝐷(𝐴)

continuity properties that u is the solution we have produced a solution for the equation. So,

finally step 5. So, S(t) is a contraction semigroup. So, in norm is less than or equal to𝑢𝑛 𝑢𝑛(𝑡)

the norm of . And this implies that norm of u(t) is less than equal to norm of . And for all𝑢𝑛(0) 𝑢
0

t greater equal to 0. And you have that

||(𝑢𝑛)'(𝑡)|| ≤ 1
𝑡 ||𝑢

0
𝑛||.

And therefore, for if you pass to the limit that norm of u dash t is less than or equal to 1 by t

times norm of u(0) for all t positive. And this completes the proof of the step. So, we will

conclude the self-adjoint case that actually we have much more to say in this.
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So, the self-adjoint case is a very, very smooth, it is a regularizing effect. So, regularity result so

Theorem: real Hilbert maximal dissipative self-adjoint. Then if u solution of𝑉 𝐴

𝑢'(𝑡) = 𝐴𝑢(𝑡)

𝑢(𝑜) = 𝑢
0
.



Then So, this is really wonderful result I will not𝑢 ∈ 𝐶𝑘((0, ∞); 𝐷(𝐴𝑙)),    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘, 𝑙 > 0.

prove it you can find the proof in the book topics in function analysis applications not a very

long proof but I do not want to get into it here.

And so, you see whatever however rough the initial data is namely it is just in v u I told you

is a space of very smooth functions. So, u belongs to l for any l so it is in fact like if𝐷(𝐴) 𝐷(𝐴)

you think of Sobolev spaces this will be something by the Sobolev inclusion theorem something

like . And in time also it is as long as you do not go to the origin t equal to 0. So, it is𝐶∞ 𝐶∞

for all k. So, the solution is extremely smooth and in the case of the self-adjoint𝐶𝑘(0, ∞)

operators. So, that is about self-adjoint case. So, now we will I will not as I send and give a proof

of this. So, let us save some time.
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So, now I want to go to so, now we want to look at the case when so, case 2 and minus are𝐴 𝐴

both maximum dissipative. So, in this case you have and should also(𝐴𝑣, 𝑣) ≥ 0 (𝐴𝑣, 𝑣) ≤ 0 

be less than or equal to 0. Because my both A and minus A are dissipative that means this

. So, now we have a theorem. So, this is a different kind of theorem.(𝐴𝑣, 𝑣) = 0,   ∀𝑣 ∈ 𝐷(𝐴)

Theorem: Hilbert space real of course a linear operator. Such that𝑉 𝐴: 𝐷(𝐴) ⊂ 𝑉 → 𝑉 𝐴

and are maximal dissipative. Then together they generate a group of isometries. So,− 𝐴

Proof: so the norm of the solution will not change at all. So, that is why you have an

isometry. So, let us let be the semigroups contraction of course generated by plus or{𝑆+,−(𝑡)}
𝑡≥0

minus A. So, let and .𝑢
0

∈ 𝐷(𝐴) 𝑢(𝑡) = 𝑆+(𝑡)𝑢
0

So, then you have that

𝑢'(𝑡) = 𝐴𝑢(𝑡)

𝑢(𝑜) = 𝑢
0
.



This is the solution to this equation. Now, norm of so, you take the scalar product of this

equation with u of t and then you get one half of d by dt norm u(t) square we have seen this

before A of u(t) u(t) and that is 0 and this means that norm of u t equals norm of u 0 for all t.

Now, this is true for all u naught but is dense in and therefore this implies that𝐷(𝐴) 𝐷(𝐴) 𝑉

norm u(t). So, but what is norm of S(t) of u naught is this and this implies that norm of S t of u

equal to norm u for all u in . So, the norm of S(t) is less than or equal to 1. And is dense𝑉 𝐷(𝐴) 𝑉

and therefore, you have this. And therefore, S plus t isometry for all t greater or equal to 0 for t

equals 0 it is just identity map.
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So, in the same way similarly, is the isometry for all . So, now let u t equals S(t) of u𝑆−(𝑡) 𝑡 ≥ 0

naught. u naught in and you define v(t) equals u . For t belonging to 0, t naught is𝐷(𝐴) (𝑡
0

− 𝑡) 𝑡
0

some fixed. So, let t naught that is equal to 0. So, then you do this and then what do you get you

have that v dash t if you differentiate this is equal to minus u dash t naught means t which is

equal to minus A of u of t naught minus t by definition. And therefore, this is equal to minus A

of v(t). So, v dash t equals minus A of v(t). v(0) is equal to what? v(0) is equal to u of t naught.

This implies that v of t equals S(t) S minus t of u of t naught. And that is equal to S minus t of S

plus t a t naught of u 0.

So, in particular but what is v of t naught v of t naught from the𝑣(0) = 𝑢(𝑡
0
) = 𝑆+(𝑡

0
)𝑢

0

definition is nothing but u of 0. So, this implies that

𝑆−(𝑡
0
)𝑆+(𝑡

0
)𝑢

0
= 𝑣(𝑡

0
) = 𝑢(0) = 𝑢

0
.

When all u naught in implies by density again for all . Similarly,𝐷(𝐴) 𝑢
0

∈ 𝑉

to the identity map.𝑆−(𝑡 )𝑆+(𝑡 )𝑢 = 𝑢

Therefore, if u define. So, define

𝑆(𝑡) = 𝑆+(𝑡),    𝑡 ≥ 0,



𝑆−(𝑡),    𝑡 < 0.

Then you have . And so, we have a group of isometries. So, in this𝑆(𝑡 )−1 = 𝑆(− 𝑡),   𝑡 ∈ ℝ

case we can solve the equations backwards and forwards. Because you have a group of

isometries and also you have a conservation property namely the norm of the initial value initial

data is preserved throughout the flow. So, these are the important properties of this. So, we have

these two particular cases. And now, our next aim is to give examples from partial differential

equations of these situations namely the self-adjoint and the case where you have a group of

isometries.


