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We know study contraction semigroups on Hilbert spaces. So, we saw the Hille Yosida

theorem which characterizes the infinitesimal generator for contraction semigroup in a Banach

space. Now, if you come to a Hilbert space it becomes even more present how to check these



conditions. So, we assume that is real Hilbert space. And the inner product will be denoted by𝑉

this and the norm will be denoted by this.

And infinitesimal generator of a contraction semigroup . So, and𝐴 {𝑆(𝑡)} ||𝑆(𝑡)𝑢|| ≤ ||𝑢||

therefore, this implies that

(𝑆(𝑡)𝑢 − 𝑢,  𝑢) ≤ 0.

So, the S(t) u inner product will by Cauchy Schwarz inequality be less than equal to norm u

norm u square and therefore, this is less than or equal to 0. So, now if you will divide by t and t

decreasing to 0.

So, this implies that

(𝐴𝑢,  𝑢) ≤ 0,   ∀𝑢 ∈ 𝐷(𝐴).

Therefore, we say that A is dissipative if So, we say minus A will(𝐴𝑢,  𝑢) ≤ 0,   ∀𝑢 ∈ 𝐷(𝐴).

be monotone that means the A u u will be greater . So, then we also know by the(− 𝐴𝑢,  𝑢) ≥ 0

Hille Yosida theorem this implies that range of I minus A is equal to whole of v.

Because given any v you can invert and therefore, that is R of 1 and therefore, for( 𝐼 − 𝐴)

every range of I in fact lambda is equal to the range of that is equal to v for all v but𝐴 𝐼 − 𝐴

anyway. So, then we say so, together these two that is is maximal dissipate why it is called𝐴

maximal dissipative that means it is dissipative and range of equal to v𝐼 − 𝐴

Why is it called maximal? Because assume that there exists v from contained in to𝐵(𝐷) 𝑉 𝑉

such that B is dissipative range of and contained in and B restricted to𝐼 − 𝐵 = 𝑉 𝐷(𝐴) 𝐷(𝐵)

equal to A. So, assume that you have these conditions that means I am having a maximal𝐷(𝐴)

dissipative operator I am extending it to another operator with the same properties.
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So, then if u belongs to then I minus A so there exists v in such that I minus A v𝐷(𝐵) 𝐷(𝐴)

equals I minus B u we have used this trick before when in the Hille Yosida theorem proof itself.

When showing that the infinitesimal generator is in fact whatever we started with. So, then v is

in therefore, A v is the same as B v and therefore, I minus B v equal to I minus B v equal𝐷(𝐴)

to I minus B u. So, I minus B v minus u equal to 0. Take the inner product with this you get norm

of v minus u square minus B B minus u v minus u equal to 0. Now, this is greater or equal to 0

and this inner product is less than equal to 0.

So, with a minus sign the whole thing becomes greater equal to 0. So, this means norm of v

minus u square equal to 0 that is v equal to u that is u belongs to . Therefore,𝐷(𝐴) 𝐷(𝐴) = 𝐷(𝐵)

and B equals A. So, that is why it is called maximal. So, if you have the dissipativity and the

range is the whole space then automatically there is no possible extra extension with the same

properties.

That is why it is called a maximal dissipative property. So, now so we have therefore so, A

infinitesimal generator of contraction semigroup implies A is maximal dissipative. Now, we

prove the converse.
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So,

Theorem: let A be maximal dissipative in a Hilbert space real of course real Hilbert

space always. Then is closed densely defined and for every exists. And𝐴 λ > 0, (λ𝐼 − 𝐴)−1

||(λ𝐼 − 𝐴)−1|| ≤ 1
λ

in particular A is the infinitesimal generators of contraction semigroup. That is why the Hille

Yosida theorem. So, it is now you see the conditions are very easy to check. So, you just have

two conditions to check that (Av, v) is less than equal to 0 it is generally easy that is just a

question of integration by parts and then you have check that has the range is whole .𝐼 − 𝐴 𝑉
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So,

Proof: step 1 we will improve the density. So, let such that for all𝑣 ∈ 𝑉 (𝑢, 𝑣) = 0

. So, let be such that . This is possible because range of I -A𝑢 ∈ 𝐷(𝐴) 𝑤 ∈ 𝐷(𝐴) 𝑤 − 𝐴𝑤 = 𝑣

is the whole of v. So, now you take the inner product with w. So,

||𝑤||2 − (𝐴𝑤, 𝑤) = 0.



So, this again this is less than or equal to 0 given to you. So, that two non negative terms equal to

0 so, this implies that norm w equal to 0 implies w equal to 0 implies v equal to 0. And therefore

this implies that is then dense in the han Banach theorem.𝐷(𝐴) 𝑉

Step 2: invertibility of .𝐼 − 𝐴

So, let such that . Then the same thing we just saw in step 1. So, this is𝑢 ∈ 𝐷(𝐴) 𝑢 − 𝐴𝑢 = 0

the same argument is in step 1 this means that u equal to 0. So, this is so, I minus A is a bijection

from to whole of v bijection because it is on to and so there exists so given v in v there𝐷(𝐴)

exists a unique u such in such that u minus Au equal to v.𝐷(𝐴)

So, therefore, you have norm u square minus A u u is equal to v u less than equal to norm v times

norm u. And therefore, this implies that norm u square this is of course less than equal to 0 so,

with a minus is where is less than or equal to norm v norm u implies norm u is less than equal to

norm v. Therefore, is continuous and 1.(𝐼 − 𝐴)−1 ||(𝐼 − 𝐴)−1|| ≤

So, that proves the invertibility of then(𝐼 − 𝐴)

Step 3 A closed. So, we are we have already seen that exists implies A closed.(𝐼 − 𝐴)−1

So, we already have observed this fact So, that need not prove it again. So,

Step 4 let such that In particular, we have this for . So,λ
0

> 0 𝑅(λ
0
𝐼 − 𝐴) = 𝑉. λ

0
= 1

let us assume that it is the thing.

So, then again you have for any v you have u minus Au equal to v and therefore, this impliesλ
0

that norm u by the same argument take inner product with is negative and therefore, this(𝐴𝑢,  𝑢)

is less than or equal to 1 by lambda naught norm v. So, this implies and also that if v 0 then the u

has to be 0. So, this implies that inverse exists and norm inverse is less thanλ
0
𝐼 − 𝐴 (λ

0
𝐼 − 𝐴)

or equal to 1 by .λ
0

(Refer Slide Time: 12:49)



So, let now and v in and we want to solve so, does there exist u such that lambda uλ ≥ 0 𝑉

minus u A u equal to v. So, let me rewrite this as lambda naught u minus A u equals v minus v

plus lambda naught minus lambda u. So, then u is equal to inverse of v plus(λ
0

𝐼 − 𝐴) λ
0

minus lambda u. So, we are looking for a fixed point of the mapping w going to lambda naught

inverse v plus minus lambda w. So, if we have a fixed-point u that is precisely the(𝐼 − 𝐴) λ
0

solution of this.

And then therefore, we can solve it. So, now, call this F of u F of w and therefore, F of w 1 minus

F of w 2 in norm is less than or equal to so, we have to subtract the v gets cancelled out and

is 1 over lambda naught into mod lambda naught minus lambda times norm w sorry w 1λ
0
𝐼 − 𝐴

minus w 2.
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So, then if more F is contraction in the sense of metric spaces implies there exists
|λ

0
−λ|

λ
0

< 1 ⇒

unique fixed point. So, when does this happen? So, this means that minus less than or equal toλ
0

lambda minus less than and that is we have the 0 less than lambda less than 2 .λ
0

λ
0

λ
0

And of course, in that case I exists as usual and(λ 𝐼 − 𝐴)−1

||(λ 𝐼 − 𝐴)−1|| ≤ 1
λ

all this we have seen already in terms in the case of and it is no different for any other number.λ
0

So, now we know equal to B that is equal to 1 implies for all lambda such that 0𝑅(λ 𝐼 − 𝐴) λ
0

less than lambda less than 2 we have range of equal to v. Now, you take 3 by 2. So,(λ 𝐼 − 𝐴)

take equal to 3 by 2 which is in this situation and apply the previous step.λ
0
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And therefore, for all we have . So, in general if you have it for0 < λ < 3, 𝑅(λ 𝐼 − 𝐴) = 𝑉

any n, 0 less than lambda less than n you have a . Then you can take n plus 1𝑅(λ 𝐼 − 𝐴) = 𝑉

by 2 and therefore, you have take lambda naught equal to n plus 1 by 2 which is less than n of

course because 2 n minus n is n n is greater than 1.

And therefore, this implies that for all 0 less than lambda less than n plus 1 we have .𝑅(λ 𝐼 − 𝐴)

So, this implies for every lambda positive we have exists andλ ∈ ℝ, λ > 0 (λ 𝐼 − 𝐴)−1

. Because . So, that therefore, we have proved this.||(λ 𝐼 − 𝐴)−1|| ≤ 1
λ 𝑅(λ 𝐼 − 𝐴) = 𝑉

So, this is the proof of the theorem. So,

Remark. So, the importance of this theorem comes from the fact we have to only check

two things. So, we need to check if this is usually integration by parts normally(𝐴𝑣, 𝑣) ≤ 0

done that way. And for some we want to show that has a uniqueλ
0

> 0 (λ
0
𝐼 − 𝐴)𝑣 = 𝑢

solution for every v. So, this is a combination of existence uniqueness and regularity theorem.

So, this is a single equation which we have received which is the type we will see in the

application this of the type which we have seen in the previous chapter the elliptic equations and



so, on. And therefore, we have you need to check only for that and then it becomes obvious that

you have that it becomes infinitesimal generator of a semigroup.𝐶
0
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So, the two important classes. one so, A maximal dissipative then 1 A is self adjoint or two is

minus A is also maximal dissipative. So, there are two important classes of maximal dissipative

operators which we like to study because they are very nice properties. And one is that A is self



adjoint and the other is when minus A also maximal dissipative that means A and minus A are

maximal dissipative.

So, we will take the case A is maximal dissipative and self-adjoint. So, this is the case which we

would like to consider now. So, we start with

Lemma so, is maximal dissipative and self-adjoint on a Hilbert space let and𝐴 λ ≥ 0 𝐴
λ

the Yosida approximation. Then is also self-adjoint and dissipative. So,𝐴
λ

Proof: let and let .𝑢
𝑖

∈ 𝑉,   𝑖 = 1, 2 𝑅(λ)(𝑢
𝑖
) = 𝑣

𝑖

That means lambda I minus A equal to i equals 1, 2. Now, you take R lambda want𝑣
𝑖

𝑢
𝑖

𝑢
1
, 𝑢

2

this is equal to . So, this is which is equal to sorry but is what𝑅(λ)(𝑢
𝑖
) = 𝑣

𝑖
𝑣

1
𝑣

2
𝑣

1
𝑢

2
𝑢

2

lambda I minus A . So, this is into lambda minus lambda minus A . So, that is equal𝑣
2

𝑣
1

𝑣
1

𝑣
2

𝑣
2

to lambda minus by self adjointness A which is u 1 which is equal to u 1 u.𝑣
1

𝑣
2

𝑣
1

𝑣
2

𝑣
2

𝑅(λ)

So, this says that is symmetric. And of course, it is continuous linear operator implies𝑅(λ) 𝑅(λ)

is self-adjoint. This implies that A lambda is also self-adjoint because A lambda is nothing but

lambda square minus lambda I. So, this therefore this no need it is definitely self-adjoint𝑅(λ)

operator. So, now, let u equal to v. So, that again lambda I minus A v is same as u.𝑅(λ)
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Now, A lambda u u equals lambda A u u u is equal to v. So, this is lambda v u which𝑅(λ) 𝑅(λ) 𝐴

equal to lambda v. And then what is u? lambda u minus lambda v minus v and that is equal to𝐴 𝐴

lambda square v v minus lambda norm v squared. Now, is dissipative And this𝐴 𝐴 (𝐴𝑣,  𝑣) ≤ 0

is also less than equal to 0. So, this is also less than or equal to 0. So, this proves this lemma.

So, this one more result before with which we want to conclude. So, proposition which we will

use in our calculation in our in the main theorem next time. So,

Proposition: Hilbert real Hilbert dissipative and self-adjoint. So, it is𝑉 𝐴 ∈ 𝐿(𝑉) 𝐴

everything A lambda satisfies all these conditions we will ultimately apply it to that. So,

𝑢(𝑡) = 𝑒
𝑡𝐴𝑢

0
  
,   𝑢

0
∈ 𝑉.

So, then ||𝑢'(𝑡)|| ≤ 1
𝑡 ||𝑢

0
||,    𝑡 > 0.

So, this we have an estimate for the norm of the derivative. So,

Proof so, you have and that is the definition because e power𝑢'(τ) = 𝐴𝑢(τ) 𝑢(0) = 𝑢
0

t A is precisely the solution of this equation here. So, if I now take the inner product. So, you𝑢
0

dash u is equal to A of u u and that is less than or equal to 0. Because you have τ τ τ τ

dissipativity.
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But this is equal to minus one half just one-half d by dt of norm u of tau squared. Therefore, this

means that norm of u tau is decreasing as tau increases because its derivative is less than or equal

to 0. So, in particular norm of u tau is always less than or equal to norm of . So, call this step𝑢
0

1.
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So, now

step 2. So, let t be positive fixed. So,

integral 0 to t u dash tau u tau d tau equals integral 0 to tau u tau d tau. So, this I have just𝐴𝑢

integrated this equation here over 0 to t. And therefore, this says this is minus d by dt of u tau

square. So, you get norm u t square minus one half minus integral 0 to t tau u tau d tau equal𝐴𝑢

to one half norm u 0 square. So, I have just taken it to the other side brought this to the side and

taken minus half u naught square to the other side. So, let us call this relationship as 1.



Now, take scalar product with tau u dash tau and integrate. So, then you get if you take the scalar

product with this equation with tau u dash tau and integrate you get 0 to t tau norm u dash tau

squared d tau minus integral 0 to t tau tau u dash tau d tau equal to 0 let me call this as 2.𝐴𝑢

Now, is self-adjoint we are going to use that we are used the dissipativity already we have to𝐴

use the self-adjoint.

So, d by d tau of tau u tau if I use the product for product rule this is dash tau u tau plus𝐴𝑢 𝐴𝑢

tau u dash tau. Now, the can go anywhere because it is self-adjoint. So, this is equal to two𝐴𝑢 𝐴

times tau u dash tau. So, again we have the integral 0 to t tau tau u dash tau d tau is equal𝐴𝑢 𝐴𝑢

to one half integral d by dt of tau u tau in the tau of course because I am just using this thing𝐴𝑢

and that by integration by parts.

So, 0 to t so, when I integrate by parts I have two terms on the boundary the lower term with tau

equals 0 will vanish. And therefore, you have t t u t minus one half integral 0 to t of then𝐴𝑢

derivative with respect to tau is just 1 tau u tau d tau call this 3. So, now you combine 1, 2,𝐴𝑢

and 3 so, 1, 2 and 3 if you combine so, 1 you have integral tau u tau. And here you have𝐴𝑢

integral tau u tau equal to something else.𝐴𝑢

And then t tau u dash tau in terms of tau u dash tau. So, you have all these connections and𝐴𝑢

therefore, you have if you combine all the three and you just check the algebra. So, you get half

norm u t square minus t t u t plus 2 integral tau norm u dash tau square 0 to t is equal to one𝐴𝑢

half norm u 0 square. Now, this is great equal to 0 minus something is also great equal to 0.
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And therefore, from these two you get that

2
0

𝑡

∫ τ||𝑢'(τ)||2𝑑τ ≤ 1
2 ||𝑢

0
||2

Now, if you take then what is this equation it says . And then𝑣'(𝑡) = 𝑢'(𝑡),     𝑣'(𝑡) = 𝐴𝑣(𝑡)

. Now, is dissipative. So, by step 1𝑣(0) = 𝐴𝑢(0) 𝐴



decreases.||𝑢'(𝑡)|| ≤ ||𝑢
0
||

That is less important. So, now it decreases. So, if you tried this from this condition so, this is

(4). So, (4) implies that

2||𝑢'(𝑡)||2

0

𝑡

∫ τ𝑑τ ≤ 1
2 ||𝑢

0
||2

Now, this is nothing but

𝑡2||𝑢'(𝑡)||2 ≤ 1
2 ||𝑢

0
||2.

So, from this you get

||𝑢'(𝑡)|| ≤ 1
2𝑡

||𝑢
0
|| .

The root 2 we do not bother about it and therefore this. So, we will remember this. So, next time

we will look at the problem

𝑢'(𝑡) = 𝐴𝑢(𝑡)

𝑢(0) = 𝑢
0
.

And where is maximal dissipative and self-adjoint. And then see what conclusions we can𝐴

especially extra conclusions we can draw about this equation.


