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We will now talk about Regularity. Regularity means when the data is more the solution is

smarter than what we normally expect it to be. So, if you look at infinitesimal generator is𝐴

then in look at think of the 2 examples which we saw. We saw that the space was l ,2 and{𝐴(𝑡)}

in case of u Au equals u dash the domain was h 1 0. And in case of Au equals Laplacian u the

domain was h 2 intersections h 1 0.

So, the domain of the operator is normally a space of smoother functions than the o channel the

space ambient space where we are working. Now, if we look at applied to itself again that𝐴 𝐴2

will be an under unbounded operator whose domain will be even smoother for instance if you

have you dash if you apply it twice you get u double dash. So, you would need at least h 2

functions to make sense.

Similarly, if you have Laplacian and then you apply again Laplacian square then you get h 4

should be the space where these functions will be ultimately coming into l 2 and therefore, the



higher the domain or power of the operator is the domain will become smoother and smoother

functions. And therefore, if your the initial data belongs to those then you can expect the solution

to be smooth also. So, that is the principle on which we are going to work today.

So, is infinitesimal generators of a semigroup and so, we define𝐴

𝐷(𝐴2) = {𝑢 ∈ 𝐷(𝐴):   𝐴𝑢 ∈ 𝐷(𝐴)}.

And if more generally if is a positive integer. Then we define𝑘 ≥ 2

𝐷(𝐴𝑘) = {𝑢 ∈ 𝐷(𝐴𝑘−1):   𝐴𝑘−1𝑢 ∈ 𝐷(𝐴)}.

and then we define . So, for , because it is in𝐴𝑘(𝑢) = 𝐴𝑘−1(𝐴𝑢) 𝑢 ∈ 𝐷(𝐴𝑘) 𝐴𝑘(𝑢) = 𝐴𝑘−1(𝐴𝑢)

the domain of Au.

Au is in the domain and therefore, and is well defined. So, this is how we define the𝐴𝑘−1(𝑢) 𝐴𝑢

higher order higher powers of the generator of an infinitesimal semi group. So, then we have the

following

Lemma: infinitesimal generator of a contraction semigroup on a Banach space. Then𝐴

is dense in remember whenever we want to be a independent Banach space𝐷(𝐴2) 𝐷(𝐴) 𝐷(𝐴)

so we need to put it with the graph norm. So, this is the lemma which we want to do
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Proof. So, what do you want to show? You want to show that . So, we want to𝑢 ∈ 𝐷(𝐴)

produce a sequence or a set of approximations which are in . And such that they𝐷(𝐴2)

approximate u in the sense of the graph norm. So, let us define

.𝑢
λ

= λ𝑅(λ)𝑢,    λ > 0

Then we know that because has its range in .𝑢
λ

∈ 𝐷(𝐴)  𝑅(λ) 𝐷(𝐴)

And further you know that always converges to u. And therefore, converges to u. So,𝑅(λ)𝑢 𝑢
λ

this is the one first lemma we proved.

Therefore, we know this so this we know. Now, what about so, is nothing but . So, that𝑢
λ

𝑅(λ)𝑢
λ

means . So,(λ𝐼 − 𝐴)𝑢
λ

= λ𝑢

𝑢 = 1
λ (λ𝐼 − 𝐴)𝑢

λ
.



So, what is ? from this equation here. And that we know belongs to𝐴𝑢
λ

𝐴𝑢
λ

= λ𝑢
λ

− λ𝑢 𝐷(𝐴)

because u lambda belongs to u also belongs to . So, the .𝐷(𝐴) 𝐷(𝐴) 𝐴𝑢
λ

∈ 𝐷(𝐴)
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So, therefore, you have that u lambda belongs to further which is𝑢
λ

∈ 𝐷(𝐴2) 𝐴𝑢
λ

= λ𝑢
λ

lambda square R lambda of u minus lambda of u from this equation u and the definition of

lambda. But this is nothing but A lambda of u and A lambda of u of course converges to A of u

we know because . So, you have u lambda converges to u Au lambda converges to A𝑢 ∈ 𝐷(𝐴)



of u and . And therefore, this implies square dense in with graph norm.𝑢
λ

∈ 𝐷(𝐴2) 𝐷(𝐴2) 𝐷(𝐴)

So, that proves that lemma.

So, now we have a nice theorem. So,

Theorem: Banach space contraction semigroup on and infinitesimal𝑉 {𝑆(𝑡)}
𝑡≥0

𝑉 𝐴

generator of . Set , where . So, we are assuming now{𝑆(𝑡)}
𝑡≥0

𝑢(𝑡) = 𝑆(𝑡)𝑢
0

𝑢
0

∈ 𝐷(𝐴2) 𝑢
0

usually we can solve the differential equation if we are now assuming further𝑢
0

∈ 𝐷(𝐴 )

smoothness as I explained earlier we are assuming it is in .𝐷(𝐴2)

So, we expect the solution to be smooth then u of belongs to . So, it is usually it was in now𝐶2 𝐶1

it is in So, the solution is very𝑢 ∈ 𝐶2([0, ∞): 𝑉) ⋂ 𝐶1([0, ∞]: 𝐷(𝐴)) ⋂ 𝐶([0, ∞]: 𝐷(𝐴2)).

smooth I mean it is twice differentiable.

And the itself is very smooth it belongs to . For more generally if k greater or equal to 2𝑢
𝑡

𝐷(𝐴2)

it is a positive integer and . Then𝑢
0

∈ 𝐷(𝐴𝑘)

𝑢 ∈
𝑗=0

𝑘

⋂ 𝐶𝑘−𝑗([0, ∞); 𝐷(𝐴𝑗)).

So, this is the general theorem. So, we have a lot of smoothness in the case of the contraction

semigroup.
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Proof: the smoother the data the smoother the solution. So, let us assume so, let

then belongs to D(A)  that is the definition. Now, you said𝑢
0

∈ 𝐷(𝐴2) 𝐴𝑢
0

𝑣(𝑡) = 𝑆(𝑡)𝐴𝑢
0

= 𝐴𝑆(𝑡)𝑢
0

= 𝐴𝑢(𝑡) = 𝑢'(𝑡).

Then v(t) is differentiable and v dash t is equal to A of v(t). And v of 0 equals A of . And v (t)𝑢
0

of course belongs to for every t positive is all standard stuff. So, now what is v(t)? v(t) is𝐷(𝐴 )

S(t) of which is A of S(t) of which is A of u t and A of u(t) is u dash t. So, v(t) is equal𝐴(𝑢
0
) 𝑢

0

to .𝑢'(𝑡)

Therefore, this belongs means so, is A of u(t) so, with u t belongs to .𝑣(𝑡) ∈ 𝐷(𝐴 ). 𝑢'(𝑡) 𝐷(𝐴)

And A of u t is equal to v t also belongs to . So, this implies that u t belongs to square.𝐷(𝐴) 𝐷(𝐴)

And u itself v itself belongs to of 0 infinity with values in v intersection C of 0 infinity with𝐶1

values in . And therefore, the u and u dashed equal to v.𝐷(𝐴)

And therefore, you have u belongs to intersection 0 infinity with values in v intersection of𝐶2 𝐶1

0 infinity with values in . And of course it is C of 0 infinity it is a continuous function and𝐷(𝐴)

its values are in so, this we have. Now general case follows by induction on k. So, that is𝐷(𝐴2)



the theorem about the regularity. Now, we want to prove one more theorem which will be useful

later on probably.
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Theorem: so Banach contraction semigroup and A infinitesimal generator let𝑉 {𝑆(𝑡)}
𝑡≥0

. And you take𝑢
0

∈ 𝐷(𝐴2)

𝑢(𝑡) = 𝑆(𝑡)𝑢
0
  𝑎𝑛𝑑 𝑢

λ
(𝑡) = 𝑒

𝑡𝐴
λ
𝑢

0,   λ > 0,

that is the usual solution of the differential equations. So, where equals𝐴
λ

= λ2𝑅(λ) − λ𝐼

equals Yosida approximation.



Then as uniformly on bounded intervals of t. So, this is the theorem. So,𝑢
λ

'(𝑡) → 𝑢'(𝑡) λ → ∞

we how did we define the semigroup at all we define the semigroup in fact so

Proof: by definition goes to u(t) is the Hille Yosida theorem. So, how did we produce𝑢
λ

the semigroup we simply took it as the limit of S(t) of A lambda u S(t) of is nothing but the𝑢
0

limit of e power t A to lambda as lambda tends to infinity.𝑢
0

That was the definition that is how we constructed the semigroup and therefore u lambda goes to

u is just straightforward solutions. Now, let so we want to show that Au lambda goes to also𝐴𝑢 

and the 2 uniformly unbounded interval so that is what we want to show. So, let us take v lambda

t equal to solution of v dash t equals v(t) , t positive and v of 0 equals . So, then what𝐴
λ

𝐴
λ
(𝑢

0
)

is the solution v lambda of t.

v lambda t is e power t A lambda times the initial condition A lambda u 0 it is equal to A lambda

e power t which is A lambda v lambda. Sorry u lambda t which is nothing but u lambda𝐴
λ
𝑢

0
𝐴

λ

dash of t that is how because it is the solution of the differential equation. e power t is the𝐴
λ
𝑢

0

solutions of this differential equation. So, u lambda t is nothing but u lambda dash of t. So, we𝐴
λ

have v lambda equals u lambda. And what is A lambda? Which is , of u lambda.𝐴
λ

𝐴
λ

𝑅(λ)

So,

||λ𝑅(λ)𝑢
λ

− 𝑢|| ≤ ||λ𝑅(λ)(𝑢
λ

− 𝑢)|| + ||λ𝑅(λ)𝑢 − 𝑢||

≤ ||𝑢
λ

− 𝑢|| + ||λ𝑅(λ)𝑢 − 𝑢||.

Now, and therefore, this is less than equal to norm of u lambda minus u plus||λ𝑅(λ)|| ≤ 1

norm of lambda u minus u. Now, we know for all u this goes to 0 and then this goes to 0.𝑅(λ)

Because we saw by the Hille Yosida thoerem u goes to 0.
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So, we have that so this implies that and what is⇒ λ𝑅
λ
(𝑢

λ
) → 𝑢

𝑣
λ

= 𝐴(λ𝑅(λ) 𝑢
λ
).

And we claim is also convergent suppose we prove this claim so, you

and is A of lambda is also convergent A is a closed operator. So, must go toλ𝑅
λ
𝑢

λ
→ 𝑢 𝑣

λ
𝑅

λ
𝑣

λ

v. So, and therefore, you will have by the closeness you will have it will go to u of t v lambda

will v lambda is u lambda dash t which will go which will converge to u dash of t. So, that is

what it will go to A of u which is u dashed of t by the closeness of the operator and therefore,

you have so, if claim then lambda R lambda u lambda goes to u and u lambda must𝐴
λ

𝑅(λ)

converge to something which must converge to A of u since A is closed. And that is but lambda

is v lambda which is u lambda dash and that goes to A u which is equal to u dash.𝑅(λ)

And we will show that this happens uniformly unbounded introverts that is . So, that is𝑢
λ

' → 𝑢'

what we want. So, we want to show the claim so now so we will show that is a Cauchy{𝑣
λ
}

sequence. So,

||𝑣
λ
(𝑡) − 𝑣

µ
(𝑡)|| ≤ ||𝑒

𝑡𝐴
λ𝐴

λ
𝑢

0
− 𝑒

𝑡𝐴
λ𝐴𝑢

0
|| + ||𝑒

𝑡𝐴
λ𝐴 𝑢

0
− 𝑒

𝑡𝐴
µ𝐴𝑢

0
|| + ||𝑒

𝑡𝐴
µ𝐴 𝑢

0
− 𝑒

𝑡𝐴
µ𝐴

µ
𝑢

0
||.



That is the definition of . So, we have all these things. So, now𝑣
µ
(𝑡)

and||𝑒
𝑡𝐴

λ|| ≤ 1 ||𝑒
𝑡𝐴

ν|| ≤ 1

So, we call that so, this will be less than or equal to first one is nothing but

||𝑒
𝑡𝐴

λ𝐴 𝑢
0

− 𝑒
𝑡𝐴

µ𝐴𝑢
0
|| ≤ 𝑡||𝐴

λ
𝐴𝑢

0
− 𝐴

µ
𝐴𝑢

0
||

≤ 𝑡||𝐴
λ
(𝐴𝑢

0
) − 𝐴 (𝐴𝑢

0
)|| + 𝑡||𝐴

µ
(𝐴𝑢

0
) − 𝐴(𝐴𝑢

0
)||
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So, now let us see what is the middle term. So again, from the Hille Yosida proof and that is step

1. We have already seen this e power Now, that is well defined because because𝐴𝑢
0

∈ 𝐷(𝐴)

.𝐴𝑢
0

∈ 𝐷(𝐴2)

That is why we are using this plus t of norm of A( ) minus A of A . I have added and𝐴
µ

𝑢
0

𝑢
0

subtracted the whole thing. So now, combine these two. So we have that

||𝑣
λ
(𝑡) − 𝑣

µ
(𝑡)|| ≤ ||𝐴

λ
𝑢

0
− 𝐴𝑢

0
|| + ||𝐴 𝑢

0
− 𝐴𝑢

0
|| +

.𝑡||𝐴
λ
(𝐴𝑢

0
) − 𝐴 (𝐴𝑢

0
)|| + 𝑡||𝐴

µ
(𝐴𝑢

0
) − 𝐴(𝐴𝑢

0
)||

And then all these terms go to 0 because is in the domain. So, by early lemma this𝑢
0

goes to 0 for the same reason this also goes to 0 as tends to infinity. And then thisλ, µ → ∞

again goes to 0 and once more because so are both in . And by the lemma all𝐴𝑢
0

𝑢
0
𝐴𝑢

0
𝐷(𝐴)

these goes to 0 and of course uniformly in bounded t intervals.

If t is in a bounded interval you can replace this space of capital T which is fixed. So,

independent of T you can choose lambda mu sufficiently large and then it will be a Cauchy

sequence. So, uniformly Cauchy implies uniformly convergent. And then by whatever we said

earlier we have that if the claim is true and because of the closeness the theorem remains proved.
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So, our next thing we will see is in the context of Hilbert space, the Hille Yosida theorem

becomes even more beautiful. So, for what did we need to know for the Hille Yosida theorem we

needed to show that lambda I minus A inverse this was the crucial thing exists and it is norm is

less than or equal . Now, this can be it is enough to say for all . In the case of a Hilbert1
λ λ > 0

space we will show that it is enough to check just for 1 lambda. Then it will automatically be true

for all lambdas that makes our life even more pleasant. And then we will see some special cases

and that will lead to various applications to the standard PDEs which we will then see. So, we

have we will stop here.


