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Today we will look at the famous Hille Yosida theorem. Which characterizes the

infinitesimal generator of a semigroup. So, before I start some errata as usual. So, in𝐶
0

yesterday's the previous lecture in the very first theorem both in the statement and the

first sentence of the proof I wrote semigroup so replace it by contraction semigroup𝐶
0

you would have worked it out because in fact we were talking that section itself was

devoted to contraction semigroups.

Now, and then in the course of the proof I am trying to prove that r lambda u is in d

omega I had the following expression

.1
ℎ

ℎ

∞

∫ 𝑒−λ(τ−ℎ)𝑆(τ)𝑢 𝑑τ = 1
ℎ

0

∞

∫ 𝑒−λ(τ)𝑆(τ)𝑢 𝑑τ



Now, this which is missing so you please add that all that. And then in front of𝑒−λ(τ)

the lemma I said A as above. And then in a little square I wrote down various things.

And so, I wrote that A closed densely defined and for every , exists.λ > 0 (λ𝐼 − 𝐴)−1

And then norm of I wrote it as 1 that is wrong you might again you would(λ𝐼 − 𝐴)−1

you known from the rest of the proof that it was actually 1 over lambda. So, these are the

corrections which we wanted to do. So, now, we want to so what did we do last time we

introduced the Yosida approximation.

So, for , you haveλ > 0

𝐴
λ

= λ𝐴𝑅(λ)

we call is nothing but lambda A minus A inverse. Which was given by the Laplace

transform. So, it is equal to lambda A lambda A R lambda which makes sense because R

lambda u for any u belongs to the domain of A and therefore this makes sense. And then

this is if you recall since lambda A minus A inverse is R lambda you get this

.= λ2𝑅(λ) − λ𝐼 ∈ 𝐿(𝑉)

So, this is a bounded linear operator and we had two lemmas and that was lambda

goes to u for all . And then and you have that goes to A u for all u in𝑅(λ)𝑢 𝑢 ∈ 𝑉 𝐴
λ
𝑢

. And then we also saw that and commute which implies that and𝐷(𝐴) 𝑅(λ) 𝑅(µ) 𝐴
λ

𝐴
µ

commute. And also, the which is a contraction semigroup. And therefore, that is{𝑒
𝑡𝐴

λ}

equal to less than or equal to 1. And so, these are the this is where we stood last time.

So, now we have the following theorem.
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Theorem: Banach space closed densely defined operator𝑉 𝐴: 𝐷(𝐴) ⊂ 𝑉 → 𝑉

such that for every exists as a bounded linear operator. Andλ > 0, (λ𝐼 − 𝐴)−1

||(λ𝐼 − 𝐴)−1|| ≤ 1
λ .

Then A is the infinitesimal generator of contraction semigroup. So, this is the converse

of what we have been doing up to now.

Proof:

Up to now we have shown that all these properties are hold for the infinitesimal

generator contraction semigroup now we are saying if A is unbounded operator with all

these properties then it is also the infinitesimal generator for contraction semigroup. So,

this is a converse. So, therefore, we will have an if and only if statements at the end of

this theorem. So,

step 1 so we have already seen that and commute.𝐴
λ

𝐴
µ

And therefore it follows that

||𝑒
𝑡𝐴

λ𝑢 − 𝑒
𝑡𝐴

µ𝑢|| = ||
0

1

∫ 𝑑
𝑑𝑠 𝑒

𝑡𝑠𝐴
λ𝑒

𝑡(1−𝑠)𝐴
µ𝑢( )𝑑𝑠||



≤
0

1

∫ 𝑡|| 𝑒
𝑡𝑠𝐴

λ𝑒
𝑡(1−𝑠)𝐴

µ(𝐴
λ
𝑢 − 𝐴

µ
𝑢)( )||𝑑𝑠

≤ 𝑡||𝐴
λ
𝑢 − 𝐴

µ
𝑢||.

that is the reason why I am using the fact that and are commuting. So, therefore,𝐴
λ

𝐴
µ

that is equal to this norm.

So, d by dx of this when S is equal to 0 you will get and when S is equal to 1 you will𝐴
µ

get A lambda and therefore, you get these two expressions. Now, you differentiate inside

so that is equal to that is less than or equal to take the norm so inside integrals 0 to 1 t

times norm e power t s A lambda e power t into 1 minus s . And into A lambda u𝐴
µ

minus u. So, if you differentiate d by dx of this expression this is what you will get.𝐴
µ

Because remember d by dx of e power t A lambda u is nothing but A lambda times e

power t lambda u so that is the v naught. So, dt ds sorry because d by ds of e power s A t

s A sorry d by dt of e power t Au is nothing but A e power t A u which is e power t Au

for the exponential operator. So, you have this. So, they know that is less than or equal

to t times now e power t s A lambda is norm is 1 this also has norm 1. So, you will just

get norm A lambda u minus A mu u. So, t times norm of A lambda u minus A mu

integral 0 to 1 ds is just 1. So, this is the first estimate.
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Step-2:So, now you let then you have𝑢 ∈ 𝐷(𝐴)

||𝑒
𝑡𝐴

λ𝑢 − 𝑒
𝑡𝐴

µ𝑢|| ≤ 𝑡||𝐴
λ
𝑢 − 𝐴𝑢|| + 𝑡||𝐴

µ
𝑢 − 𝐴𝑢||.

I am using the triangle inequality A lambda u minus A u plus t times norm of A mu u

minus A. Now, this can be made as lambda mu go to infinity by the lemma because A

for u is in A lambda u goes to A u and therefore, A mu u also goes to A u.𝐷(𝐴),

That is why it is called the Yoshida approximation. So, this goes to 0 and further because

this is just t in the front this convergence is uniform over bounded t intervals. So, if t

belongs to bounded interval then of course you can choose lambda mu sufficiently large

independent of t and therefore that will give you the uniform convergence. Therefore,

this means that e power t A lambda u uniformly Cauchy for u in .𝐷(𝐴)

But is dense in and norm of e power t A lambda is less than or equal to 1 and𝐷(𝐴) 𝑉

therefore the shows this is a limit when you have uniform convergence and therefore this

implies e power t A lambda u is uniformly Cauchy for all u in v u in we said but𝐷(𝐴)

because is dense and this is uniformly bounded therefore it is also uniformly𝐷(𝐴)

Cauchy in for all u. So, please you can check that.



So, then we define

𝑆(𝑡)𝑢 =
λ ∞
lim
→

𝑒
𝑡𝐴

λ𝑢,    𝑢 ∈ 𝑉.

So, we have a candidate for the semigroup. So, we have to check now several things we

have to check that is in fact a contraction semigroup and that its domain is in fact{𝑆(𝑡)}

infinitesimal generator is in fact t . So, let us do that. So,𝐴

Step-3: So, clearly for is linear and because it is the limit of a linear{𝑆(𝑡)}
𝑡≥0

operator point wise and . Since so we and further||𝑆(𝑡)|| ≤ 1, ||𝑒
𝑡𝐴

λ|| ≤ 1, 𝑆(0) = 𝐼.
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So, these are obvious properties from the definitions here. So, now we want to check the

Semigroup property. So, let us take and𝑢 ∈ 𝑉

𝑒
𝑡𝐴

λ𝑒
𝑠𝐴

λ − 𝑆(𝑡)𝑆(𝑠)𝑢 = 𝑒
𝑡𝐴

λ 𝑒
𝑠𝐴

λ − 𝑆(𝑠)( )𝑢 + 𝑒
𝑡𝐴

λ𝑆(𝑠)𝑢 − 𝑆(𝑡)𝑆(𝑠)𝑢.

So, you have that

||𝑒
𝑡𝐴

λ𝑒
𝑠𝐴

λ − 𝑆(𝑡)𝑆(𝑠)𝑢|| ≤ ||𝑒
𝑡𝐴

λ 𝑒
𝑠𝐴

λ − 𝑆(𝑠)( )𝑢|| + ||𝑒
𝑡𝐴

λ𝑆(𝑠)𝑢 − 𝑆(𝑡)𝑆(𝑠)𝑢||.



And then this may now this goes to 0 by definition. And this also𝑒
𝑡𝐴

λ 𝑒
𝑠𝐴

λ − 𝑆(𝑠)( )𝑢

goes to 0 by definition S s of u is some vector and therefore𝑒
𝑡𝐴

λ𝑆(𝑠)𝑢 − 𝑆(𝑡)𝑆(𝑠)𝑢

this also goes to 0 of the definition.

Therefore,

𝑆(𝑡 + 𝑠)𝑢 =
λ ∞
lim
→

𝑒
(𝑡+𝑠)𝐴

λ𝑢 =
λ ∞
lim
→

𝑒
𝑡𝐴

λ. 𝑒
𝑠𝐴

λ𝑢 = 𝑆(𝑡)𝑆(𝑠)𝑢 = 𝑆(𝑡 + 𝑠)𝑢.

And therefore, this shows . So, that shows the semigroup𝑆(𝑡)𝑆(𝑠) = 𝑆(𝑡 + 𝑠)

property.
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Finally, the property we have to show. And now the convergence of to is𝐶
0

𝑒
𝑡𝐴

λ𝑢 𝑆(𝑡)𝑢 

uniform on bounded intervals. And this implies that limit that h tending to 0 S h of u is

nothing but is S 0 u. So, this shows so this implies that is a contraction{𝑆(𝑡)}
𝑡≥0

semigroup. So, step four so let be the infinitesimal generator of . So, to show𝐵 {𝑆(𝑡)}

.𝐵 = 𝐴

So, that means, we have to show that the domains coincide and on the domains the

operators also coincide. So, now, let u belong to . So, is nothing but𝐷(𝐴) 𝑆(𝑡)𝑢 − 𝑢

limit as lambda tends to infinity e power t A lambda u minus u but what is e power t A

lambda u minus u is equal to integral 0 to t e power tau A lambda A lambda u d tau.

Because this is nothing but the derivative of e power tau A lambda. So, I am evaluating

the derivative. Derivative is nothing that we have already seen that d by dt of we have

that here. So, I am just quoting that so I am writing it like this.
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Now, that is equal to integral 0 to t of e power tau A lambda into A lambda u minus A u

d tau plus integral 0 to t e power tau A lambda A u d tau. So, as lambda goes to infinity

the first term this norm is less than or equal to 1 and this norm is less than or equal to 1

A lambda u goes to A u because u is in and therefore this goes to 0. A lambda u𝐷(𝐴)

goes to A u and which is a norm of tau A lambda is less than or equal to 1.

So, the first term goes to 0. The limit of the second term is what? It is e power tau A

lambda as lambda goes to infinity A u uniform on bounded intervals therefore this is a

integration of a uniformly convergent sequence goes to the integral in the limit. So, this

will converge to integral 0 to t of S tau of A u. So, if u is belongs to you have S t𝐷(𝐴)

of u minus u by t is equal to limit of e power t A lambda u minus u by t which is equal to

1 by t integral 0 to t S tau Au d tau. And we know this goes as t decreases to 0 up to the

value at 0. So, 0 1 time is just goes to Au.
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Therefore, if this implies that and B u equals A u. Therefore,𝑢 ∈ 𝐷(𝐴) 𝑢 ∈ 𝐷(𝐵)

and B restricted to is the same as A. So, we have now to show. So,𝐷(𝐴) ⊂ 𝐷(𝐵) 𝐷(𝐴)

to show . So, let u belong to . Now, I minus A is invertible implies𝐷(𝐴) = 𝐷(𝐵) 𝐷(𝐵)

there exists v in the domain of A such that I minus A v equal to B sorry I minus B u. So,

this is some vector any vector you can invert it.

So, I am going to say this since it is invertible and therefore I have this that is it mean v

equals R 1 of this quantity that is all I am saying. But then A v equal to B v since v

belongs to D of A and therefore I minus B of v minus u equal to 0. But I minus B is



invertible. And v and u belong to v belongs to therefore, it is in and this is in𝐷(𝐴) 𝐷(𝐵)

. And therefore, this implies that v equal to u and therefore this implies u belongs𝐷(𝐵)

to D of A. So, this implies that and B equals. So, the infinitesimal𝐷(𝐴) = 𝐷(𝐵)

generator therefore infinitesimal generator of S t is in d b A and that completely proves

the theorem. So, now we combine all the theorems which we have proved.
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So, we have the following statement. So, this theorem is the Hille Yosida



Theorem(Hille Yosida) : an unbounded operator on a real Banach space is𝐴 𝑉

the infinitesimal generator of a contraction semigroup if and only if is closed and𝐴

densely defined for every exists. And so, this is 1 this is 2 and 3λ > 0,   (λ𝐼 − 𝐴)−1

norm of is less than or equal to 1 over .(λ𝐼 − 𝐴)−1 λ

So, these are the necessary and sufficient conditions for an unbounded operator to be the

infinitesimal generator of a same contraction semigroups. What is the importance of this

theorem? So, we wanted to solve du t by dt equals A u. And u equals u naught so we

wanted to solve this differential equation. Now, we want to so A is an unbounded

operator. So, it is closed and densely defined and the important thing to verify is a

condition 2 and 3. And therefore this lead is so this problem reduces to the study of

existence.

Uniqueness and a priori estimates of solutions of the form offer solutions of equations of

the form you have that lambda u minus A u equal to v with only to be arbitrary. So, this

so this is not evolution problem this is the kind of problem you will see in fact is the

kind of problem we been looking at the previous in this previous chapter the elliptic

equations type of problems. So, these are the stationary problems and solutions of this

and proper estimation will give you the see if you can solve this problem or not.
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So, up to now we worked in a real Banach space to

Remark: If is a complex Banach space. And is a infinitesimal generator of a𝑉 𝐴

contraction semigroup. Then for with real you will have that equalsλ ∈ 𝐶 λ > 0 𝑅(λ)𝑢

integral e power minus lambda tau s tau of u d tau exists and R lambda equals lambda I

minus A inverse and norm of R lambda is less than or equal to 1 over real part of

lambda.

So, that will be the thing and this will also be a sufficient condition. So, these three

conditions. Now, we cannot extend these results to cover real lambda less than or equal



to 0 even so let us say take the following example. So, let us v equals bounded

uniformly continuous functions on 0 infinity. And complex valued functions you𝑆(𝑡)𝑠

can take the translation semigroup which we have already𝑆(𝑡)𝑓𝑠 = 𝑓(𝑠 + 𝑡) + 𝑡

seen. So, .𝑠, 𝑡 ≥ 0
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So, then is a contraction semigroup and will be equal to set of all{𝑆(𝑡)} 𝐷(𝐴) 𝑓 ∈ 𝑉

such that . So, this is exactly as we did before. There is no difference we have𝑓, ∈ 𝑉

already seen this in the real case you can do it for the complex case also. So, and

. So, now, if real . Now, if you look at the equation this is𝐴𝑓 = 𝑓' λ ≤ 0 𝐴(λ)φ − 𝑎φ

lambda phi minus phi dash equal to 0 has the non-trivial solution. Namely e power

lambda s and this equal to phi of s. And .φ ∈ 𝐷(𝐴)

Because its derivative is just lambda times e power lambda s and that is also a bounded

uniformly continuous function. Therefore, implies that not invertible if real(λ𝐼 − 𝐴)

lambda is less than or equal to 0. So, you cannot expect anything better than that. So,

now assume so we looked at contraction semigroups. Now, if is such that𝑆(𝑡) ≥ 0

let us say .||𝑆(𝑡)|| ≤ 𝑀ω𝑡,    𝑀 = 1

So, . So, then you look at this is a contraction 𝑀 = 1, {𝑒 ω𝑡}  ,  ω ≥ 0 𝑆
1
(𝑡) = 𝑒−ω𝑡𝑆(𝑡)

semigroup. And it is infinitesimal generator of you can check is nothing but .𝑆
1

𝐴 − ω𝐼

And therefore, you can deduce from the Hille Yosida Theorem or following theorem.
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So,

Theorem: V real Banach space. is the infinitesimal generator𝐴: 𝐷(𝐴) ⊂ 𝑉 → 𝑉

of a semi group satisfying is closed densely defined and for every||𝑆(𝑡)|| ≤ 𝑒ω𝑡 ⇔ 𝐴 

, inverse exists andλ > ω (λ𝐼 − 𝐴)−1 ||(λ𝐼 − 𝐴)−1|| ≤ (λ − ω)−1.

So, you have to just translate the origin by omega and you get this theorem.

Now, what about general theorems? So, characterization of the infinitesimal semigroup

for the general case M . So, I will not tell you so and . So, then we𝑒ω𝑡 𝑀 ≥ 1 ω ≥ 0

have the following

Theorem: Banach real of course is the infinitesimal𝑉 𝐴: 𝐷(𝐴) ⊂ 𝑉 → 𝑉

generator of a semigroup satisfying if and only if A is closed densely defined.𝐶
0

*

And for every , exists. And now the condition is a little moreλ > ω (λ𝐼 − 𝐴)−1

stringent

||(λ𝐼 − 𝐴)−𝑛|| ≤ 𝑀(λ − ω)−𝑛.



N is a positive integer. So, this is the genuine Hille Yosida Theorem for an arbitrary the

semigroup. So, we will continue further. So, this is the complete completion of the𝐶
0

proof of the Hille Yosida Theorem. So, we have done the whole thing in detail for

contraction semigroups. And we have sent how we can modify it for the general case.

So, if you want to see details see the book by Passi.


