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So, we now talk about the core objects of this chapter namely Semigroups. So, we were𝐶
0

looking at Bamach bounded linear operators continuous linear operator. And𝑉 𝐴 ∈ 𝐿(𝑉)

then we were looking at which is group of operators so okay. So, now we want𝑆(𝑡) = 𝑒𝑡𝐴

to imitate the properties of this in an abstract sense. So, we start with the following

definition. So,

Definition: Bamach space and a family of continuous linear operators𝑉 {𝑆(𝑡)}
𝑡≥0

on .𝑉

It is said to be to form a semigroup if the following hold𝐶
0

(𝑖)  𝑆(0) = 𝐼;  

(𝑖𝑖)  𝑆(𝑡 + 𝑡') = 𝑆(𝑡) 𝑆(𝑡')   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡, 𝑡' ≥ 0;  



(𝑖𝑖𝑖) 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑢 ∈ 𝑉,     
𝑡 0
lim
→

𝑆(𝑡)𝑢 = 𝑢.  

So, if these three properties are satisfied then you have a what is called a semigroup. So,𝐶
0

Remark: is called semi group property.(𝑖𝑖)

And if it is a group if this is true for all if true for all then you have𝑡 ∈ ℝ 𝑡 ∈ ℝ 𝑡, 𝑡' ∈ ℝ

then we have a group and you have inverse is will be invertible and its𝑆(𝑡) 𝑆(− 𝑡). 𝑆(𝑡)

inverse will be . Now, refers to property three namely you have some kind of𝑆(− 𝑡) 𝐶
0

continuity at the limit at t equal to 0.
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So,

Example 1: So, bounded continuous linear operator. Then you have𝐴 ∈ 𝐿(𝑉)

is a semigroup I put semi within brackets because it is in fact a group in this𝑆(𝑡) = 𝑒𝑡𝐴 𝐶
0

case. So, now we will look at a genuine another example.

Example 2: so bounded uniformly continuous functions to with𝑉 = 𝐵𝑈𝐶(ℝ) ℝ ℝ

the sup norm.



So, this is a Banach space as you probably know otherwise you can check it and then for

. So, we define𝑓 ∈ 𝑉

𝑆(𝑡)(𝑓)(𝑠) = 𝑓(𝑡 + 𝑠),    𝑡 ≥ 0,   𝑠 ∈ ℝ.

Then of course that is obvious because is nothing but f(s) again and𝑆(0) = 𝐼 𝑆(0)(𝑓)(𝑠)

then the semigroup properties obvious because if you translate once and then you translate

by another number it is a same as translating by .𝑡
1

+ 𝑡
2

And then the continuity comes because you have they are all uniformly continuous

functions. Therefore, given any there exists a such thatε > 0 δ > 0

|𝑓(𝑠 + ℎ) − 𝑓(𝑠)| ≤ ε

for all or maybe I should put . And therefore,𝑡 ∈ ℝ 𝑓(𝑠 + ℎ) − 𝑓(𝑠)

|𝑆(ℎ)(𝑓) − 𝑓|
0,∞

≤ ε.

And therefore you have that in the as . So, this is an example of a𝑆(ℎ)(𝑓) → 𝑓 𝑉 ℎ → 0 𝐶
0

semigroup.

(Refer Slide Time: 6:20)

So, now let us quickly start various properties of the semigroup so they are all 1,



Theorem: Banach and a semigroup on . Then there exists𝑉 {𝑆(𝑡)}
𝑡≥0

𝐶
0

𝑉 𝑀 ≥ 1

and such thatω ∈ ℝ

||𝑆(𝑡)|| ≤ 𝑀𝑒ω𝑡,   ∀, 𝑡 ≥ 0 .

Proof: so there exists an and delta positive such that for all𝑀 ≥ 1 0 ≤ 𝑡 ≤ δ,

.||𝑆(𝑡)|| ≤ 𝑀

So, if not so without loss of generality, so you have a constant . And then know𝑀 ≥ 1 𝑀

if not there exists a just that𝑡
𝑛{ } → 0

is unbounded. But for every that is property three. And||𝑆(𝑡
𝑛
)|| 𝑆(𝑡

𝑛
)𝑢 → 𝑢 𝑢 ∈ 𝑉

therefore by the Banach Stien house so this contradicts Banach Stein house. So, it is

pointwise bounded so, it has to be uniformly bounded. So, it goes converges for every 𝑢

and therefore it is pointwise bounded.

But then is not uniformly bounded and this contradicts. Therefore, there exists an𝑆(𝑡
𝑛
) 𝑀

which you can take bigger than equal to . So, now you define omega so define𝑀

. Then given any there existsω = 1
δ 𝑙𝑜𝑔 𝑀 ≥ 0. 𝑡 ≥ 0

𝑛 ≥ 0 𝑎𝑛𝑑 η 𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔 0 ≤ η < δ,

such that .𝑡 = 𝑛δ + η

So, what you are doing is, you are taking you have t here you have zero here so, you go by

steps of delta till you come near it. And then t will be finally n delta and then plus an eta

so, you go n steps and then you will get here.
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So, now for you have by a semigroup property this is nothing but S delta power n{𝑆(𝑡)}

times eta. So,

||𝑆(𝑡)|| ≤ ||𝑆(δ)||𝑛||𝑆(η)|| ≤ 𝑀𝑛𝑀 ≤ 𝑀𝑒ω𝑡

So, this is less than or equal to power n is less than or equal to omega t. So, power n𝑙𝑜𝑔 𝑀

is less than e power omega t times . So, therefore, this proves the theorem.𝑀

Corollary: so every you have is continuous from into .𝑢 ∈ 𝑉 𝑡 → 𝑆(𝑡)𝑢 [0, ∞) 𝑉

So,



Proof: So, let ℎ ≥ 0,

||𝑆(𝑡 + ℎ)𝑢 − 𝑆(𝑡)𝑢|| ≤ ||𝑆(𝑡)|| ||𝑆(ℎ)𝑢 − 𝑢|| ≤ 𝑀𝑒ω𝑡||𝑆(ℎ)𝑢 − 𝑢||

And that is

and this goes to 0 as h goes to 0. Similarly,

||𝑆(𝑡)𝑢 − 𝑆(𝑡 − ℎ)𝑢|| ≤ ||𝑆(𝑡 − ℎ)|| ||𝑆(ℎ)𝑢 − 𝑢|| ≤ 𝑀𝑒ω(𝑡−ℎ)||𝑆(ℎ)𝑢 − 𝑢||

and again that goes to 0 as h goes to 0. So, this proves that in place t going to S t of u

continuous for every .𝑢 ∈ 𝑉
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So, we say we symbolically write this remark the statement of the above theorem above

Corollary: is written as

𝑆(.)𝑢 ∈ 𝐶([0, ∞); 𝑉).

So it is a Banach space continuous function from for every t that means for𝑡 → 𝑆(𝑡)𝑢

every u in . So, this is the statement which we have there. So, definition if and𝑉 𝑀 = 1

thenω = 0, ||𝑆(𝑡)|| ≤ 1,   ∀𝑡 ≥ 0.

So, this is called a semi group of contractions or a contraction semigroup, if



||𝑆(𝑡)|| ≤ 𝑀𝑒−ω𝑡,  ω > 0.   

Then we say that, that is also possible I mean we have showed that it is less than that𝑀𝑒ω𝑡

is a general number which we have got.

But in reality it can happen that can also be less than this. And then we say that is{𝑆(𝑡)}

exponentially stable. So

Example, if A is a n by n matrix all of whose eigenvalues are of negative real part

then is exponentially stable we can prove this. I am just stating it now but we can we𝑒𝑡𝐴

will probably see it in the exercises or in the EM assignments.
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So, since you have the is continuous from into . Therefore, we can𝑡 → 𝑆(𝑡)𝑢 [0,  ∞) 𝑉

integrate the continuous function with values in a Banach space. So

Lemma: let . Then𝑢 ∈ 𝑉

ℎ 0
lim
→

1
ℎ

𝑡

𝑡+ℎ

∫ 𝑆(τ)𝑢 𝑑τ

is nothing but the lower end the value at the lower end. So,𝑆(τ)𝑢

Proof. so let be given. So,ε > 0

|| 1
ℎ

𝑡

𝑡+ℎ

∫ 𝑆(τ)𝑢 𝑑τ − 𝑆(𝑡)𝑢|| = || 1
ℎ

𝑡

𝑡+ℎ

∫ (𝑆(τ) − 𝑆(𝑡)𝑢)𝑑τ||.

Now be then this is a constant so you can pull it into the integral. And from the properties

of the integral this is

≤ 1
ℎ

𝑡

𝑡+ℎ

∫ ||𝑆(τ) − 𝑆(𝑡)𝑢||𝑑τ.



rather let us let me not write it that way. So, S tau of u minus S t of u d tau. But you know

that t going to S t of u or tau going to S tau of u is continuous.

Therefore, there exists a such that for allδ > 0

we have or rather if tau minus t less than delta we have norm of S tau of u minus|ℎ| < δ

S t of u is less than epsilon. That is just the definition of continuity and therefore you have

that this thing is less than and therefore you have for all mod . So, this proves theε |ℎ| < δ

theorem. So, now we are going to introduce a very important concept.
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So,

Definition, so Banach a semigroup, the Infinitesimal generator𝑉 {𝑆(𝑡)}
𝑡≥0

𝐶
0

𝐴

of is defined as follows. So, the domain of it is an unbounded operator{𝑆(𝑡)}
𝑡≥0

𝐷(𝐴) 𝐴

which we will see. So, this is set of all such that𝑢 ∈ 𝑉

𝐷(𝐴) = 𝑢 ∈ 𝑉  :   
ℎ 0
lim
→

𝑆(ℎ)𝑢−𝑢
ℎ   𝑒𝑥𝑖𝑠𝑡𝑠

⎰
⎱

⎱
⎰

and if we have𝑢 ∈ 𝐷(𝐴)



𝐴𝑢 =
ℎ 0
lim
→

𝑆(ℎ)𝑢−𝑢
ℎ = 𝐷+𝑓(𝑠)

So, this is the definition of the infinitesimal generator which is which will play a very key

role in the theory, so the very important definition.

(Refer Slide Time: 20:00)

Example 1: So, you have bounded linear operator and you have𝐴 ∈ 𝐿(𝑉)

𝑆(𝑡) = 𝑒𝑡𝐴.



Then we have seen

ℎ 0
lim
→

𝑒ℎ𝐴𝑢−ℎ𝑢
ℎ = 𝐴𝑢,   ∀𝑢

we did this competition yesterday. And therefore we have that A is the infinite decimal

generator. So, this is true for all u in of . And in fact it is a bounded linear operator.𝑉 𝑒𝑡𝐴

So, in this case, it is not just an unbounded defined everywhere. So, now let us look at𝐴

another the other

Example. So, let us like as usual bounded uniformly continuous functions on𝑉 ℝ

and

S t f at s is f of t plus s the translation semigroup. So, you translate by t is a semigroup.

So, then suppose that means𝑓 ∈ 𝐷(𝐴)

should exist. And this but we know if the limit exists this is the
ℎ 0
lim
→

𝑆(ℎ)𝑓−𝑓
ℎ 𝐷+𝑓(𝑠)

derivative one sided derivative. And so exists for all s and you have belongs𝐷+𝑓(𝑠) 𝐷+𝑓

to it is a bounded uniformly continuous function because we know that the limit𝐵𝑈𝐶

should.

Now you look at

𝑓(𝑠)−𝑓(𝑠−ℎ)
ℎ = 𝐷+𝑓(𝑠 − ℎ) + 𝑜(ℎ)

ℎ

by this little o we mean that the numerator goes to 0 this quotient goes to 0 as h goes to 0

so little . And so, as h goes to 0 this will converge to because is a𝑜(ℎ)
ℎ 𝐷+𝑓(𝑠) 𝐷+𝑓

continuous in fact bounded uniformly continuous and this part go has to go to 0. So, that

means exists for all s and𝐷−𝑓(𝑠) 𝐷+𝑓(𝑠) = 𝐷−𝑓(𝑠)
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Therefore, that is, if f belongs to the infinite domain of the infinite decimal generator then

we have the f is differentiable at all points and the and you have A of f is𝑓' ∈ 𝐵𝑈𝐶(ℝ)

nothing but f dash so this is the not it sorry so in fact okay . So, conversely assume𝐴𝑓 = 𝑓'

such that . Then we claim f s in D(A) and .𝑓 ∈ 𝐵𝑈𝐶(ℝ) 𝑓' ∈ 𝐵𝑈𝐶(ℝ) 𝐴𝑓 = 𝑓'

So, for that we denote

φ
ℎ
(𝑠) = 𝑓(𝑠+ℎ)−𝑓(𝑠)

ℎ .



Now, which is bounded uniformly continuous functions in and𝑓' ∈ 𝑉 𝐵𝑈𝐶(ℝ) ℝ

therefore

φ
ℎ
(𝑠) − 𝑓'(𝑠) = 1

ℎ
𝑠

𝑠+ℎ

∫ [𝑓'(τ) − 𝑓'(𝑠)] 𝑑τ

this fundamental theorem of calculus Because is a constant as far as this integration𝑓'(𝑠)

is concerned.

Now, if you if you have by uniform continuity of there exists a such thatε > 0 𝑓' δ > 0

|τ − ℎ| < δ,  

implies this is uniform continuity. And therefore this means that if|𝑓'(τ) − 𝑓'(𝑠)| < ε

|ℎ| < δ,  

we have

|φ
ℎ
(𝑠) − 𝑓'(𝑠)| = | 1

ℎ
𝑠

𝑠+ℎ

∫ [𝑓'(τ) − 𝑓'(𝑠)] 𝑑τ| ≤ ε

you pull it out and then you have so, the whole thing is less than
𝑠

𝑠+ℎ

∫ [𝑓'(τ) − 𝑓'(𝑠)] 𝑑τ ε,

for all s.

That means uniformly that means but that is exactly saying that thisφ
ℎ

→ 𝑓' 𝑓 ∈ 𝐷(𝐴)

and 𝐴𝑓 = 𝑓'.

Therefore, you have that equals set for f in such that f dash belongs to be𝐷(𝐴) 𝐵𝑈𝐶(ℝ)

. And so this is the infinitesimal generator in this case we will see lot𝐵𝑈𝐶(ℝ) 𝐴𝑓 = 𝑓'.

more about infinitesimal generators subsequently and we will investigate the properties of

the infinitesimal generator next.


