Sobolev Spaces and Partial Differential Equations
Professor S Kesavan
Department of Mathematics
Institute of Mathematical Sciences
Lecture 72
Unbounded Operators — Part 2
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We were discussing the adjoint of a map and in case V is a Hilbert space. Then if
A:D(A) CV—>V,A:D(A) CV—V.And if you have that A=A, that means

D(A) = D(A*) , Ais symmetric as I said then you say A is self-adjoint.

So, now we will see a couple of examples for the adjoint. So, first example.
Example. so we go back to the examples which we looked at last time. So, V = W = LZ(O, 1)
D(A) =H' (), &= (0,1), Au = ', u € D(A).

So, A, so there was one erratum in the previous lecture. So, we have that A is closed. So, then I
said if u n goes to u in L2 of omega and u n dash goes to v in L2 omega.

S . 1 . .
Then this implies we have seen this before u € H O(Q), yesterday, last time I mistakenly wrote

it as LZ(Q), so please correct it. And you have u' = v. So, this is how we prove that A is closed.

So, we now go back to this example.

So, A is densely defined and therefore the adjoint can be defined. So,

1
D(A) = (v € L}(Q): |{u‘v| < clul,, Vu € H' ().

1

Soifv € D(A) = |[ vl < cldl,, Vb €H (Q).
) ,

And then we have seen, comparing earlier exercise on Sobolev spaces, that this implies that

v € H'(Q).

1 1

Conversely if v € Hl(Q), then you have [u'v =— [ uv'
0 0

And therefore this implies that v € D(A*). So, we have shown D(A*) =H 1(Q) .



and from this condition here this implies that A v =— v'". So, this is the example.
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So, now let us go to the other example which we looked at last time so example 2.

Example 2. So, now again V = W = L°(Q), D(A) = H'(Q) N H' (). So, 2 € R" bounded

open set of class C °. And then Au = Au. And again this is a densely defined and closed operator

and therefore we now want to compute its adjoint.

So, letu,v € D(A), then you have



IUAU = fVu. Vv = fAu. v (*)

So, | [ Au. v| < clul,, = v € D(4)= D(4) € D(4).

And also by this relation, the symmetric relationship in place that A is also symmetric for all

these terms, star implies A is symmetric. Therefore, you have that.

so we claim A self-adjoint, therefore to show D(A*) c D(A ). So, that is what we have to show.
So, let f € LZ(Q) andu € H 10(9), the unique solution of
— Au+u=fin(,
u=0onl =090 (¥

So, u denote as usual as G of f, then we know that G is continuous L2 omega into H 1 0 of
omega back into L2 of omega. So, it is continuous and of course, G is also self adjoint. We have
seen this in the connection of the eigenvalue problem and so on. So, we have, we know that it is

symmetric and therefore it is, G is symmetric in place self-adjoint.

Now for every f in L2 of omega dagger has a unique solution. Therefore, it implies that

R(I - A) = LZ(Q), andG = (I — A)_1 is a continuous linear operator.
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So, now let u € D(A*), and youset f = u — A*u, let w € V be arbitrary and v = G(w). So,

(I — A)v = w. So, now this is the inner product in the L2. So,

(f,v) = (u - A*u, v) = (u, (I — Av) = (u,w).

Now, G is self-adjoint, therefore (Gf,u) = (f,Gw) = (f,v) = (u, w).



So, for every w € Hlo(Q), you have (Gf,w) = (u,w), Hlo is dense in L. So, you have

Gf = w.ButR(G) € H' (@) N H'(Q) = D(A).Sou € D(A)= D(A) < D(A).

Therefore, this implies that A is self adjoint.
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So, remark.
Remark: A: D(A) c V = V, V Hilbert, is said to be monotone if (Au,u) = 0, Vu € V.
And then it is said to be maximal monotone if R(I + A) = V.

Now in the above example -A is maximal monotone (say maximal dissipative). So, the above

proof can be modified to show A maximum monotone. And symmetric =A is self-adjoint.
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Remark: If V is a complex Hilbert space we can still do this complex Hilbert space. So,
A:D(A) c V>V, DA)={veV: |(v,Aw| < c|[ul|, Yu € D(A)}, A:D(A) cV >V,

(Av,u) = (v, Au), Yu € D(A), u € D(A).
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And finally V and W Banach and A: D(A) © V — W closed operator. Then we define the norm

||u||D(A) = ||u||V + ||Au||W, u € D(A)- graph norm.

Then A closed implies that D(A) is complete for this norm. So, you take any Cauchy sequence

||un—u <e,Vnm =N

m”D(A)

therefore then {un} Cauchy in V and {Aun}is Cauchy in W. And therefore u —u and

Aun -V €V >u € D(A) and Au = v and therefore the Cauchy sequence u —u in
And V is Hilbert and V = W then you know that D(A) is also Hilbert with the inner product

(u, v)D(A) = (u, v)V + (Ay, AU)W, u,v € D(A).

So, this becomes an inner product which will give the above norm the graph norm and that

completes. So, this is a rapid revision of unbounded operators.



