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We were discussing the adjoint of a map and in case V is a Hilbert space. Then if

And if you have that that means𝐴: 𝐷(𝐴) ⊂ 𝑉 → 𝑉,  𝐴*: 𝐷(𝐴*) ⊂ 𝑉 → 𝑉.  𝐴 = 𝐴*,  

A is symmetric as I said then you say A is self-adjoint.𝐷(𝐴) = 𝐷(𝐴*) ,  

So, now we will see a couple of examples for the adjoint. So, first example.

Example. so we go back to the examples which we looked at last time. So, 𝑉 = 𝑊 = 𝐿2(0, 1)

𝐷(𝐴) = 𝐻1
0
(Ω),  Ω = (0, 1),  𝐴𝑢 = 𝑢',  𝑢 ∈ 𝐷(𝐴).

So, A, so there was one erratum in the previous lecture. So, we have that A is closed. So, then I

said if u n goes to u in L2 of omega and u n dash goes to v in L2 omega.

Then this implies we have seen this before , yesterday, last time I mistakenly wrote𝑢 ∈ 𝐻1
0
(Ω)

it as , so please correct it. And you have . So, this is how we prove that A is closed.𝐿2(Ω) 𝑢' = 𝑣

So, we now go back to this example.

So, A is densely defined and therefore the adjoint can be defined. So,

𝐷(𝐴*) = {𝑣 ∈ 𝐿2(Ω):  |
0

1

∫ 𝑢'𝑣| ≤ 𝑐|𝑢|
0,Ω

  ∀ 𝑢 ∈ 𝐻1
0
(Ω)} .

So if .𝑣 ∈ 𝐷(𝐴*) ⇒ |
0

1

∫ ϕ'𝑣| ≤ 𝑐|ϕ|
0,Ω

  ∀ ϕ ∈ 𝐻1
0
(Ω)

And then we have seen, comparing earlier exercise on Sobolev spaces, that this implies that

.𝑣 ∈ 𝐻1(Ω)

Conversely if , then you have𝑣 ∈ 𝐻1(Ω)
0

1

∫ 𝑢'𝑣 =−
0

1

∫ 𝑢𝑣'

And therefore this implies that . So, we have shown𝑣 ∈ 𝐷(𝐴*) 𝐷(𝐴*) = 𝐻1(Ω) .



and from this condition here this implies that . So, this is the example.𝐴*𝑣 =− 𝑣'
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So, now let us go to the other example which we looked at last time so example 2.

Example 2. So, now again So, bounded𝑉 = 𝑊 = 𝐿2(Ω),  𝐷(𝐴) = 𝐻2(Ω) ∩ 𝐻1
0
(Ω). Ω ⊂ ℝ𝑁

open set of class And then And again this is a densely defined and closed operator𝐶0. 𝐴𝑢 = ∆𝑢 .

and therefore we now want to compute its adjoint.

So, let , then you have𝑢, 𝑣 ∈ 𝐷(𝐴)



(*)∫ 𝑢∆𝑣 = ∫ ∇𝑢. ∇𝑣 = ∫ ∆𝑢.  𝑣

So, |∫ ∆𝑢.  𝑣| ≤ 𝑐|𝑢|
0,Ω

 ⇒ 𝑣 ∈ 𝐷(𝐴*) ⇒ 𝐷(𝐴) ⊂ 𝐷(𝐴*) .

And also by this relation, the symmetric relationship in place that A is also symmetric for all

these terms, star implies A is symmetric. Therefore, you have that.

so we claim A self-adjoint, therefore to show . So, that is what we have to show.𝐷(𝐴*) ⊂ 𝐷(𝐴 )

So, let and , the unique solution of𝑓 ∈ 𝐿2(Ω) 𝑢 ∈ 𝐻1
0
(Ω)

− ∆𝑢 + 𝑢 = 𝑓 𝑖𝑛 Ω,

(*)𝑢 = 0 𝑜𝑛 Γ = ∂Ω.  

So, u denote as usual as G of f, then we know that G is continuous L2 omega into H 1 0 of

omega back into L2 of omega. So, it is continuous and of course, G is also self adjoint. We have

seen this in the connection of the eigenvalue problem and so on. So, we have, we know that it is

symmetric and therefore it is, G is symmetric in place self-adjoint.

Now for every f in L2 of omega dagger has a unique solution. Therefore, it implies that

and is a continuous linear operator.𝑅(𝐼 − 𝐴) = 𝐿2(Ω),  𝐺 = (𝐼 − 𝐴)−1
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So, now let and you set , let arbitrary and . So,𝑢 ∈ 𝐷(𝐴*),  𝑓 = 𝑢 − 𝐴*𝑢 𝑤 ∈ 𝑉 𝑏𝑒 𝑣 = 𝐺(𝑤)

So, now this is the inner product in the L2. So,(𝐼 − 𝐴)𝑣 = 𝑤.

(𝑓, 𝑣) = (𝑢 − 𝐴*𝑢,  𝑣) = (𝑢, (𝐼 − 𝐴)𝑣) = (𝑢, 𝑤).

Now, G is self-adjoint, therefore (𝐺𝑓, 𝑢) = (𝑓, 𝐺𝑤) = (𝑓, 𝑣) = (𝑢, 𝑤).



So, for every you have So, you have𝑤 ∈ 𝐻1
0
(Ω),  (𝐺𝑓, 𝑤) = (𝑢, 𝑤),  𝐻1

0
 𝑖𝑠 𝑑𝑒𝑛𝑠𝑒 𝑖𝑛 𝐿2.

But So𝐺𝑓 = 𝑢. 𝑅(𝐺) ⊂ 𝐻1
0
(Ω) ∩ 𝐻2(Ω) = 𝐷(𝐴). 𝑢 ∈ 𝐷(𝐴) ⇒ 𝐷(𝐴*) ⊂ 𝐷(𝐴).

Therefore, this implies that A is self adjoint.
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So, remark.

Remark: V Hilbert, is said to be monotone if𝐴: 𝐷(𝐴) ⊂ 𝑉 → 𝑉,  (𝐴𝑢, 𝑢) ≥ 0,  ∀𝑢 ∈ 𝑉.

And then it is said to be maximal monotone if 𝑅(𝐼 + 𝐴) = 𝑉.

Now in the above example -A is maximal monotone (say maximal dissipative). So, the above

proof can be modified to show A maximum monotone. And symmetric A is self-adjoint.⇒



(Refer Slide Time: 13:58)

Remark: If V is a complex Hilbert space we can still do this complex Hilbert space. So,

𝐴: 𝐷(𝐴) ⊂ 𝑉 → 𝑉,  𝐷(𝐴*) = {𝑣 ∈ 𝑉:  |(𝑣, 𝐴𝑢)| ≤ 𝑐||𝑢||,  ∀ 𝑢 ∈ 𝐷(𝐴)} ,  𝐴*: 𝐷(𝐴*) ⊂ 𝑉 → 𝑉,

(𝐴*𝑣, 𝑢) = (𝑣, 𝐴𝑢),  ∀𝑢 ∈ 𝐷(𝐴*),  𝑢 ∈ 𝐷(𝐴).
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And finally V and W Banach and closed operator. Then we define the norm𝐴: 𝐷(𝐴) ⊂ 𝑉 → 𝑊

- graph norm.||𝑢||
𝐷(𝐴)

= ||𝑢||
𝑉

+ ||𝐴𝑢||
𝑊

,  𝑢 ∈ 𝐷(𝐴)

Then A closed implies that D(A) is complete for this norm. So, you take any Cauchy sequence

||𝑢
𝑛

− 𝑢
𝑚

||
𝐷(𝐴)

< ϵ ,  ∀𝑛, 𝑚 ≥ 𝑁

therefore then Cauchy in V and is Cauchy in W. And therefore and{𝑢
𝑛
} {𝐴𝑢

𝑛
} 𝑢

𝑛
→ 𝑢 

and therefore the Cauchy sequence in𝐴𝑢
𝑛

→ 𝑣 ∈ 𝑉 ⇒ 𝑢 ∈ 𝐷(𝐴) 𝑎𝑛𝑑 𝐴𝑢 = 𝑣  𝑢
𝑛

→ 𝑢 

.||. ||
𝐷(𝐴)

And V is Hilbert and V = W then you know that is also Hilbert with the inner product𝐷(𝐴) 

(𝑢, 𝑣)
𝐷(𝐴)

= (𝑢, 𝑣)
𝑉

+ (𝐴𝑢, 𝐴𝑣)
𝑊

 ,  𝑢, 𝑣 ∈ 𝐷(𝐴) .

So, this becomes an inner product which will give the above norm the graph norm and that

completes. So, this is a rapid revision of unbounded operators.


