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Today, we will start a new chapter, Introduction to Semi-Groups and Applications to

Evolutionary Equations. So, the theory of semi-groups plays an important role in the study of

evolution equations and this is an abstract framework in which we can study many

evolutionary equations. So, one of the essential ingredients of this theory is the notion of an

unbounded linear operator.

So, first, we will talk about unbounded linear operators. So, we start with the, so we take V

and W Banach spaces and is a subspace of V and a linear map. So,𝐷(𝐴) 𝐴: 𝐷(𝐴) ⊂ 𝑉 → 𝑊

a linear operator will henceforth define be of this kind, namely, it is defined on a subspace of

V, not necessarily on the whole of V and it is a linear map.

So, then is called the domain of , contained in V. Then𝐷(𝐴) 𝐴

𝐼𝑚𝑎𝑔𝑒(𝐴) = 𝑅𝑎𝑛𝑔𝑒(𝐴) = 𝑅(𝐴) ⊂ 𝑊.

Then the null space (kernel) of A. So, , so this is𝑁(𝐴) = 𝑁(𝐴) = {𝑥 ∈ 𝐷(𝐴): 𝐴𝑥 = 0} 

what is called the null space of A.



And, so now we have the following definition:

Definition: A linear operator is said to be bounded if there exists a𝐴: 𝐷(𝐴) ⊂ 𝑉 → 𝑊

such that for every , you have𝐶 > 0 𝑢 ∈ 𝐷(𝐴) ||𝐴𝑢||
𝑊

≤ 𝐶||𝑢||
𝑉

 .

So, this is the usual boundedness which we have seen in case of linear operators.

Otherwise, if this is not true it is said to be unbounded. So, it is said to be densely defined, if

; that means, the domain is dense, so that is just this thing. And it is set to be the𝐷(𝐴) = 𝑉

graph of A equal to 𝐺(𝐴) = {(𝑦, 𝑥) ∈ 𝑉 × 𝑊:  𝑥 ∈ 𝐷(𝐴),  𝑦 = 𝐴𝑥} .

So, and then A is said to be closed, if is closed in .𝐺(𝐴) 𝑉 × 𝑊
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Remark: so if and A is bounded, then that is, A is a continuous linear operator as𝐷(𝐴) = 𝑉 

we have usually known in function analysis. So, in general, a bounded linear operator extends

uniquely to a continuous linear operator on .𝐷(𝐴)

So, if A is closed, that means the graph of A is closed and , then this implies that A𝐷(𝐴) = 𝑉

is a continuous linear operator. This is nothing but the closed graph theorem, one of the

famous theorems in Banach space theory.

Now A, closed is a closed subspace of V. (Check ), very easy to check, so normally,⇒ 𝑁(𝐴) 

if you have a continuously linear operator then of course null space is a closed subspace, but

if it is a general linear operator, nothing can be said about the null space, and if A is a closed



operator, that means the graph is closed, then you say that it is a, then the null space will be

closed.

So, then remark.

Remark: how to check A is closed? So, what is the method which we usually employ? So,

we want to show is closed. So, you take and , of course, so that𝐺(𝐴) 𝑢
𝑛

∈ 𝐷(𝐴) 𝐴𝑢
𝑛

∈ 𝑅(𝐴)

. So, assume , and show that, (i)(𝑢
𝑛
,  𝐴𝑢

𝑛
) ∈ 𝐺(𝐴) 𝑢

𝑛
→ 𝑢 𝑖𝑛 𝑉 ,  𝐴𝑢

𝑛
→ 𝑣 𝑖𝑛 𝑊 𝑢 ∈ 𝐷(𝐴)

and (ii) Then is closed.𝐴𝑢 = 𝑣. 𝐺(𝐴)
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So let us, so most, almost all the operators which we will come across in the course of the

next few lectures will be, of course, closed, and densely defined. So anyway, let us start with

some examples. So example one:

Example: so let , and . So, then you defineΩ = (0, 1) ⊂ ℝ 𝑉 = 𝑊 = 𝐿2(Ω)

and for all , , namely the distribution derivative. So, then𝐷(𝐴) = 𝐻1
0
(Ω) 𝑢 ∈ 𝐷(𝐴) 𝐴𝑢 = 𝑢'

it is well defined.

It is not defined on all of , it is defined this. So, then A is densely defined. Because you𝐿2

know that is dense in and is dense in also. So, is dense in𝐷(Ω) 𝐻1
0
(Ω) 𝐷(Ω) 𝐿2(Ω) 𝐻1

0
(Ω)

, so A is densely defined. Then it is unbounded.𝐿2(Ω)

so let us take So, then𝑢
𝑛
(𝑥) = 2

𝑛π  sin 𝑛π𝑥.  𝑢
𝑛
'(𝑥) = 2 cos 𝑛π𝑥 = 𝐴𝑢

𝑛
(𝑥) .

And now you have,

|𝑢
𝑛
|

0,Ω
= 1

𝑛π → 0 𝑎𝑠 𝑛 → ∞ 𝑎𝑛𝑑 |𝐴𝑢
𝑛
|

0,Ω
= 1 ∀ 𝑛 .

So, you cannot have a constant C s.t. because this stays at 1 and this|𝐴𝑢
𝑛
|

0,Ω
≤ 𝐶 |𝑢

𝑛
|

0,Ω

goes to 0, therefore this implies that it is unbounded.

Now, and therefore by Poincare’s inequality So,𝑁(𝐴) = {𝑢 ∈ 𝐻1
0
(Ω):  𝑢' = 0}, 𝑢 = 0 .

. Now what about the range of A?𝑁(𝐴) = {0}

So, if you have , this implies Conversely, if𝑢',  𝑢 ∈ 𝐻1
0
(Ω)

0

1

∫ 𝑢'(𝑡)𝑑𝑡 = 0.

then you define
0

1

∫ 𝑣(𝑡)𝑑𝑡 = 0, 𝑢(𝑥) =
0

𝑥

∫ 𝑣(𝑡)𝑑𝑡,  ⇒ 𝑣 ∈ 𝐻1
0
(Ω) 𝑎𝑛𝑑 𝑢' = 𝑣 .

And therefore, 𝑅(𝐴) = {𝑣 ∈ 𝐿2(Ω):
0

1

∫ 𝑣(𝑡)𝑑𝑡 = 0} .



Finally, we want to show that A is closed, so let and .𝑢
𝑛

→ 𝑢 𝑖𝑛 𝐿2(Ω) 𝐴𝑢
𝑛

→ 𝑣 𝑖𝑛 𝐿2(Ω)

that means , but this is one of the very first things we did when we proved𝑢
𝑛
' → 𝑣 𝑖𝑛 𝐿2(Ω)

Sobolev spaces especially to show that it is complete that means and𝑢 ∈ 𝐿2(Ω) 𝑢' = 𝑣 .

And that is . And therefore, you have that this is a closed operator as𝐴𝑢 = 𝑣 𝑎𝑛𝑑 𝑢 ∈ 𝐷(𝐴)

well, so this is one example.
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So, second example.

(2) so again, bounded open set of class . And then again, we takeΩ ⊂ ℝ𝑁 𝐶0

𝑉 = 𝑊 = 𝐿2(Ω),  𝐷(𝐴) = 𝐻2(Ω) ∩ 𝐻1
0
(Ω),  𝐴𝑢 = ∆𝑢 ,  𝑢 ∈ 𝐷(𝐴).

So again, A is densely defined. Now it is unbounded, A is unbounded, so let be{𝑤
𝑛
} 

Eigenfunctions of with Dirichlet boundary conditions.− ∆ 



That means automatically. And Now we know𝑤
𝑛

∈ 𝐷(𝐴) 𝐴𝑤
𝑛

=− λ
𝑛
𝑤

𝑛
 . |𝑤

𝑛
|

0,Ω
= 1,

normalized Eigenfunctions, whereas and therefore this is a clearly|𝐴𝑤
𝑛
|

0,Ω
= |λ

𝑛
| → ∞

unbounded operator.

What about ? is singleton because you have ,𝑁(𝐴) 𝑁(𝐴) {0} − ∆𝑢 = 0 𝑎𝑛𝑑 𝑢 ∈ 𝐻1
0
(Ω)

then Poincare’s inequality tells you that it implies that u =0. Now, if there exists𝑓 ∈ 𝐿2(Ω) ,  

unique , such that𝑢 ∈ 𝐻1
0
(Ω) − ∆𝑢 = 𝑓 𝑎𝑛𝑑 𝑢 = 0 𝑜𝑛 ∂Ω.

And regularity theorem, . So, And therefore, .𝑢 ∈ 𝐻2(Ω) 𝑢 ∈ 𝐷(𝐴),  𝐴𝑢 = 𝑓. 𝑅(𝐴) = 𝐿2(Ω)
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So, now A is again closed, so we have to show this. So, 𝑢
𝑛

∈ 𝐷(𝐴) = 𝐻2(Ω) ∩ 𝐻1
0
(Ω),  

. So, let𝑢
𝑛

→ 𝑢 𝑖𝑛 𝐿2(Ω) 𝑓
𝑛

=− ∆𝑢
𝑛

→ 𝑓 𝑖𝑛 𝐿2(Ω) .

But and this is bonded.|∇𝑢
𝑛
|2

1,Ω
=

Ω
∫ |∇𝑢

𝑛
|2 =

Ω
∫ 𝑓

𝑛
𝑢

𝑛
≤ |𝑓

𝑛
|

0,Ω
|𝑢

𝑛
|

0,Ω
 −

So is bounded in , so in weakly weak to some W and therefore 𝑢
𝑛 

𝐻1
0

𝑢
𝑛

→ 𝑢 𝐻1
0

in by the Rellich theorem. But already in . So, this implies that𝑢
𝑛

→ 𝑤 𝐿2(Ω) 𝑢
𝑛

→ 𝑢 𝐿2(Ω)

. Now for all𝐻1
0
(Ω) 𝑧 ∈ 𝐻1

0
(Ω),  

Ω
∫ ∇𝑢

𝑛
. ∇𝑧 =

Ω
∫ 𝑓

𝑛
𝑧 ⇒

Ω
∫ ∇𝑢 . ∇𝑧 =

Ω
∫ 𝑓 𝑧

So, you have And by regularity, you have .− ∆𝑢 = 𝑓 𝑖𝑛 Ω . 𝑢 ∈ 𝐷(𝐴) = 𝐻2(Ω) ∩ 𝐻1
0
(Ω)

And therefore, and this implies that A is closed.− ∆𝑢
𝑛

= 𝑓
𝑛

→ 𝑓 =− ∆𝑢  

So, these are two, in fact, very important examples, which we will return to a little later.
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So, now we want to, I want to give a definition which is very important. So, let us take

, which is densely defined. So, this is a very important hypothesis at this𝐴: 𝐷(𝐴) ⊂ 𝑉 → 𝑊 

moment. So, let are the duals of V, W respectively. So, now I define,𝑉 *,  𝑊 *  

𝐷* = {𝑓 ∈ 𝑊*:  ∃ 𝐶 > 0 |𝑓(𝐴𝑢)| ≤ 𝐶||𝑢||
𝑉

,  ∀ 𝑢 ∈  𝐷(𝐴)} .

Now, if , then is a continuous linear functional on with norm .𝑓 ∈ 𝐷* 𝑢 → 𝑓(𝐴𝑢) 𝐷(𝐴) ||. ||
𝑉

But is dense in V implies there exists a unique such that𝐷(𝐴) 𝑔 ∈ 𝑉* 

𝑔(𝑢) = 𝑓(𝐴𝑢), ∀𝑢 ∈ 𝐷(𝐴) .



So, then you have (𝐴*𝑓)(𝑢) = 𝑓(𝐴𝑢) ,  ∀ 𝑓 ∈ 𝐷(𝐴*),  ∀ 𝑢 ∈ 𝐷(𝐴) .

So, at this juncture we will use the bracket notation, so

< 𝐴*𝑓, 𝑢>
𝑉*,𝑉

=< 𝑓, 𝐴𝑢>
𝑊*,𝑊

 ,  ∀ 𝑢 ∈ 𝐷(𝐴) .

- adjoint of A .𝐴*
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So, the theorem:



Theorem: So, is a densely defined linear operator. Then𝐴: 𝐷(𝐴) ⊂ 𝑉 → 𝑊

is closed.𝐴*: 𝐷(𝐴*) ⊂ 𝑉* → 𝑊*

proof: So to show star is closed, so let us take .𝐺(𝐴*) 𝑊* × 𝑉*

So, let us take 𝑓
𝑛

∈ 𝐷(𝐴*),  𝑓
𝑛

→ 𝑓 𝑖𝑛 𝑊*,  𝐴𝑓
𝑛

→ 𝑔 𝑖𝑛 𝑉*.

So, what do we have to show? So we have to show that 𝑓 ∈ 𝐷(𝐴*),  𝐴*𝑓 = 𝑔.

So, if 𝑢 ∈ 𝐷(𝐴),  < 𝐴*𝑓
𝑛
,  𝑢>

𝑉*,𝑉
=< 𝑓

𝑛
, 𝐴𝑢>

𝑊*,𝑊
 .

But this implies, < 𝑔, 𝑢>
𝑉*,𝑉

=< 𝑓, 𝐴𝑢 >  −−−−− (*)

So, | < 𝑓, 𝐴𝑢 > | ≤ ||𝑔|| ||𝐴𝑢|| ⇒ 𝑓 ∈ 𝐷(𝐴*)

And (*) implies is closed.𝑔* = 𝐴*𝑓 ⇒ 𝐴*
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Theorem: Let is a continuous linear operator. Then is continuous and𝐴: 𝑉 → 𝑊 𝐴*: 𝑊* → 𝑉*

||𝐴|| = ||𝐴*|| .

proof: So, let , and arbitrary. Then𝑓 ∈ 𝑊* 𝑢 ∈ 𝑉 

| < 𝑓, 𝐴𝑢 > |
𝑊*,𝑊

= ||𝑓|| ||𝐴𝑢|| ≤ ||𝑓|| ||𝐴|| ||𝑢||

⇒ 𝑓 ∈ 𝐷(𝐴*) ⇒ 𝐷(𝐴*) = 𝑊* 

and therefore is closed and by by the closed graph theorem is continuous.𝐴*: 𝑊* → 𝑉* 𝐴*

And, so you have < 𝑓, 𝐴𝑢 >=< 𝐴*𝑢, 𝑓 >   ,  ∀ 𝑓 ∈ 𝑊*,  ∀ 𝑢 ∈  𝑉 .

.⇒  (𝐶ℎ𝑒𝑐𝑘 !)  ||𝐴|| = ||𝐴*||

So, you just use this, take the modulus on either side and then take the inequalities, you will

get less than and less than equal to .||𝐴|| ||𝐴*|| ||𝐴*|| ||𝐴||
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Remark. if V is a real Hilbert space, we can identify . We have already gone through𝑉 = 𝑉*

this thing generally. So, if you take which is densely defined, we can𝐴: 𝐷(𝐴) ⊂ 𝑉 → 𝑉

define 𝐴*: 𝐷(𝐴) ⊂ 𝑉 → 𝑉  𝑏𝑦 (𝐴*𝑢, 𝑣) = (𝑢, 𝐴𝑣) ,  ∀ 𝑢 ∈ 𝐷(𝐴*),  𝑣 ∈ 𝐷(𝐴) .

Definition: V is a real Hilbert space and is densely defined. Then A is𝐴: 𝐷(𝐴) ⊂ 𝑉 → 𝑉

said to be symmetric, if for every , you have𝑢, 𝑣 ∈ 𝐷(𝐴)

(𝐴𝑢, 𝑣) = (𝑣, 𝐴𝑢) .

Also A is said to be self-adjoint, if , that is, and is symmetric.𝐴* = 𝐴 𝐷(𝐴*) = 𝐷(𝐴) 𝐴



So, if you have a continuous linear operator then, or a bounded linear operator, then there is

no distinction between which is densely defined, so it will automatically be a continuous

linear operator. And therefore, the symmetry and self-adjointness are one and the same.

But if you have a unbounded operator, which is densely defined then if you, symmetry does

not imply so symmetry, so A unbounded remark symmetric only implies that 𝐷(𝐴) ⊂ 𝐷(𝐴*)

and that . So, to show that it is self-adjoint that means you have to show the𝐴*|
𝐷(𝐴)

= 𝐴

. So, symmetry is not enough alone. So we will see examples of𝐷(𝐴) = 𝐷(𝐴*) 𝑎𝑛𝑑 𝐴 = 𝐴*

the adjoint next time.


