Sobolev Spaces and Partial Differential Equations Professor S. Kesavan Department of Mathematics Institute of Mathematical Sciences Exercises – Part 13

(Refer Slide Time: 0:17)

(4) Let $\Omega \subset \mathbb{R}^N$ be a bounded, connected, open set of class C^0 . Let $\{\Omega_n\}$, be a sequence of bounded, connected, open sets of class C^0 containing Ω and such that $\overline{\Omega} = \bigcap_{i=1}^{\infty} \overline{\Omega_i}$. Let $\lambda_1(\Omega)$ denote the first eigenvalue of Δ with homogeneous Dirichlet boundary conditions. Let $\lambda_1(\Omega_n)$ denote the first eigenvalue, etcetera in

 $\lambda_1(\Omega)$, and here it is, in Ω_n with homogeneous Dirichlet boundary conditions. Show that $\lambda_1(\Omega) = \lim_{n \to \infty} \lambda_1(\Omega_n)$.

proof: so $\Omega_{n+1} \subset \Omega_n$, $\forall n$, so this implies that $\lambda_1(\Omega_n) \leq \lambda_1(\Omega_{n+1})$. Also, $\Omega \subset \Omega_n$, $\forall n$, and therefore this implies that $\lambda_1(\Omega_n) \leq \lambda_1(\Omega)$. So, this implies that $\{\lambda_1(\Omega_n)\}$ is a monotonically increasing sequence and bounded by $\lambda_1(\Omega)$. And therefore, we have that $\lim_{n \to \infty} \lambda_1(\Omega_n)$ exists and

$$\lim_{n \to \infty} \lambda_1(\Omega_n) = \sup_{1} \lambda_1(\Omega_n) \le \lambda_1(\Omega).$$

(Refer Slide Time: 3:55)

Let Un & H'6 (52,1) (we are eigenful. for $\lambda_i(v_{2n}) = \int_{v_{2n}} u_n^2 = 1$. where $v_i(v_{2n})$	NPT
	= \ \lount & = \lambda \long \long \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
کی لیٹر ایج	= Jlun Polx = 1.	
= {~, } in a la	d. seg. in Ho (52,)	
3 where	un to (so,) weally	
	un -> 3 in (2(2)) (Rollich-K)	
Q. (O) 20 Apr 10 DA - 20 Apr 10 DB	un> & Hoise a.e.	
	-	

So, let $u_n \in H^1_0(\Omega_n)$ be an Eigenfunction for $\lambda_1(\Omega_n)$ and $\int_{\Omega_n} u_n^2 = 1$. So, then un $\widetilde{u}_n \in H^1_0(\Omega_1)$ (extension by zero), and also you have

$$\int_{\Omega_{1}} \left| \nabla \widetilde{u_{n}} \right|^{2} = \int_{\Omega_{n}} \left| \nabla u_{n} \right|^{2} = \lambda_{1}(\Omega_{n}) \leq \lambda_{1}(\Omega).$$

And you have $\int_{\Omega_1} |\widetilde{u_n}|^2 = \int_{\Omega_n} u_n^2 = 1$. So, this implies that $\widetilde{u_n}$ is a bounded sequence in $H^1_0(\Omega_1)$. Therefore, there exists a subsequence such that $u_{n_k} \to z \in H^1_0(\Omega_1)$ weakly. And therefore, by the Relic theorem, $u_{n_k} \to z$ in $L^2(\Omega_1)$. And for the further subsequence, which you will choose as the subsequence in question, that $u_{n_k} \to z$ pointwise almost everywhere. So, in particular, the integral $\int_{\Omega_1} |z|^2 = 1$.

(Refer Slide Time: 6:35)

So, let $x \in \Omega_1 \setminus \overline{\Omega}$, therefore, there exists N(x) such that for all $n \ge N(x)$, $x \in \overline{\Omega}_n$,

$$\widetilde{u}_{n}(x) = 0, \ \forall n \ge N(x) \Rightarrow z(x) = 0 \ a. \ e. \ x \in \Omega_{1} \backslash \overline{\Omega}.$$

$$\Rightarrow z \in H_{0}^{1}(\Omega).$$

So,
$$\lambda_1(\Omega) \le \int_{\Omega} |\nabla z|^2 dx = \int_{\Omega_1} |\nabla z|^2 dx \le \lim \inf_{n_k \to \infty} \int_{\Omega_1} |\nabla u_{n_k}|^2 dx$$

$$\begin{split} = & \lim \; \inf_{n_k \to \infty} \lambda_1(\Omega_{n_k}) \leq & \lim \; \sup_{n_k \to \infty} \lambda_1(\Omega_{n_k}) \leq \lambda_1(\Omega). \\ \\ \Rightarrow & \lim \; \lambda_1(\Omega_{n_k}) = \lambda_1(\Omega) \,. \end{split}$$

But we already know that $\{\lambda_1(\Omega_n)\}$ is convergent and we have a subsequence converging to lambda 1 of omega and therefore this implies that $\lim_{n\to\infty}\lambda_1(\Omega_n)=\lambda_1(\Omega).$

So, with this, we will wind up this chapter, and we will now start next time a study of Semi-Groups of Operators and their Applications to Evolution Equations.