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So, let us do some more exercises:

(1), let V and H be separable Hilbert spaces with a inner product and respectively(.,. )
𝑉

(.,. )
𝐻

and norms and respectively. Let us look , the inclusion being dense and||. ||
𝑉

||. ||
𝐻

 𝑉 → 𝐻

compact. Let be continuous, symmetric and V-elliptic by linear form. Let .𝑎: 𝑉 × 𝑉 → ℝ 𝑓 ∈ 𝐻

(a): there exists a unique such that for every .𝑢 ∈ 𝑉 𝑎(𝑢, 𝑣) = (𝑓, 𝑣)
𝐻

 ,  𝑣 ∈ 𝐻

So, the immediate consequence of the Lax-Milgram lemma. a is asymmetric V elliptic

continuous by linear form. So, if you look at

|(𝑓, 𝑣)
𝐻

| ≤ ||𝑓||
𝐻

||𝑣||
𝐻

≤ 𝑐||𝑓||
𝐻

||𝑣||
𝑉

 ,  𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑣 → (𝑓, 𝑣)
𝐻

 

is a continuous linear functional on V. Therefore, by Lax-Milgram there exists a unique u.



(b): set Show that is continuous self adjoint and compact. We are of𝐺(𝑓) = 𝑢. 𝐺: 𝐻 → 𝐻

course, talking of real Hilbert spaces that are understood to be dealing with real functions.

So, this we are trying to imitate what we did for the Laplacian. So, this is the abstract framework.

So, is certainly linear,𝑓 → 𝑢 α||𝑢||2
𝑉

≤ 𝑎(𝑢, 𝑢) = (𝑓, 𝑢)
𝐻

≤ 𝑐||𝑓||||𝑣||
𝑉

 

⇒ ||𝑢||
𝑉

≤ 𝑐
α ||𝑓|| .

And therefore, you have is continuous and this inclusion is continuous and compact.𝐺 → 𝐻 → 𝑉

Therefore, is compact. It is self adjoint as we have seen many times.𝐺 ∈ 𝐿(𝐻) 
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So, we have and therefore, G is self adjoint. So,(𝐺𝑓, 𝑔) = 𝑎(𝐺𝑔, 𝐺𝑓) = 𝑎(𝐺𝑓, 𝐺𝑔) = (𝑓, 𝐺𝑔)
𝐻

 

also . So, if , but then V is(𝐺𝑓, 𝑓) = 𝑎(𝐺𝑓, 𝐺𝑓) ≥ α||𝐺𝑓||2 𝐺𝑓 = 0 ⇒ (𝑓, 𝑣) = 0,  ∀ 𝑣 ∈ 𝑉

dense in H implies So, therefore, you have(𝑓, 𝑓) = 0 ⇒ 𝑓 = 0 . (𝐺𝑓, 𝑓) > 0 𝑖𝑓 𝑓 ≠ 0 .

(c): is dense in V.𝐼𝑚(𝐺) 

So, a is a symmetric elliptic continuous bilinear form.

Therefore, defines in the inner product and the norm, is(𝑢, 𝑣) = 𝑎(𝑢, 𝑣) ||𝑢||
𝑎

= 𝑎(𝑢, 𝑢) 

equivalent to usual.

So, assume that assume such that , but . So,𝑣 ∈ 𝑉 𝑎(𝑢, 𝑣) = 0,  ∀ 𝑢 ∈ 𝑅𝑎𝑛𝑔𝑒(𝐺) 𝑢 = 𝐺(𝑓)

and that means but and therefore, this means(𝑓, 𝑣) = 0,  ∀ 𝑣 ∈ 𝑉 𝑉 ⊂ 𝐻 

(𝑣, 𝑣)
𝐻

= 0 ⇒ 𝑣 = 0

So, therefore by the Hahn Banach theorem the range of G is dense in V.

(Refer Slide Time: 09:05)



(d): there exists an orthonormal basis of H, and sequence of positive numbers{𝑢
𝑛
} {λ

𝑛
} 

such that So, this is the eigenvalue problem and you can write𝑎(𝑢
𝑛
, 𝑣) = λ

𝑛
(𝑢

𝑛
,  𝑣),  ∀ 𝑣 ∈ 𝐻.

therefore, 0 < λ
1

≤ λ
2

≤.... ≤ λ
𝑛
.... → ∞ .

So, is compact self adjoint bounded linear operator So, there exists Eigenvalues𝐺: 𝐻 → 𝐻 {µ
𝑛
}

such that . So, the sequence of Eigenvalues and dimension of Eigenspace of is finite.µ
𝑛

→ 0 µ
𝑛

Now, because this implies G of un equal to 0 andµ
𝑛

≠ 0 𝐺𝑢
𝑛

= µ
𝑛
𝑢

𝑛
⇒ 𝐺𝑢

𝑛
= 0 ⇒ 𝑢

𝑛
= 0



that implies that u n equal to 0 because G f f equal to 0 we know implies f equal to 0. And

therefore, mu n is not so, mu n cannot be 0 and so, we have and also

(𝐺𝑢
𝑛
, 𝑢

𝑛
) > 0 𝑖𝑓 𝑢

𝑛
≠ 0 ⇒ 𝑢

𝑛
> 0 .

Therefore, you put λ
𝑛

= 1
µ

𝑛
,  𝑡ℎ𝑒𝑛 λ

𝑛
→ ∞ 𝑎𝑛𝑑 𝐺𝑢

𝑛
= µ

𝑛
𝑢

𝑛

That means That means𝑢
𝑛

= 𝐺(λ
𝑛
𝑢

𝑛
) .  𝑎(𝑢

𝑛
, 𝑣) = (λ

𝑛
𝑢

𝑛
, 𝑣) = λ

𝑛
(𝑢

𝑛
, 𝑣)  , ∀ 𝑣 ∈ 𝐻 .

So, this proves it.

Now you can go ahead and try to pause the show so, try to show Rayleigh quotient

characterization of eigenvalues. So, you can write

𝑅(𝑣) = 𝑎(𝑣,𝑣)

||𝑣||2
𝐻

  ,  𝑣 ∈ 𝑉,  𝑣 ≠ 0 .
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So, this is the way you can study various eigenvalue problems based on this abstract framework.

So, we will give you one example now.

(2) (eigenvalue problem, Neumann case).

So, we have done the Dirichlet’s case in the lectures. So, we are now looking at Neumann from.

So, let bounded open set and and considerΩ ⊂ ℝ𝑁 ∂Ω = Γ

and− ∆𝑢 = λ𝑢 𝑖𝑛 Ω ∂𝑢
∂ν = 0 𝑜𝑛 Γ .

So, we will also say connected this case. So, now you rewrite this equation as:

− ∆𝑢 + 𝑢 = (λ + 1)𝑢 = Λ𝑢 .

So, we will take 𝑎(𝑢, 𝑣) =
Ω
∫ ∇𝑢. ∇𝑣 +

Ω
∫ 𝑢𝑣  ,    𝑉 = 𝐻1(Ω) ,  𝐻 = 𝐿2(Ω).

So, then on the hypothesis of problem 1 satisfied. So, this implies that there exists an

orthonormal basis of and positive sequence such that for{𝑤
𝑛
} 𝐿2(Ω) {Λ

𝑛
} 𝑎(𝑤

𝑛
, 𝑣) = Λ

𝑛
(𝑤

𝑛
,  𝑣),

all 𝑣 ∈ 𝐻1(Ω) .



So, this will imply that

Ω
∫ ∇𝑤

𝑛
. ∇𝑣 = (Λ

𝑛
− 1)

Ω
∫ 𝑤

𝑛
𝑣  ,  ∀ 𝑣 ∈ 𝐻1(Ω) .

So, you set and therefore, sinceλ
𝑛

= Λ
𝑛

− 1
Ω
∫ ∇𝑤

𝑛
. ∇𝑤

𝑛
≥ 0 ⇒ λ

𝑛
≥ 0,  ∀ 𝑛 .
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So, what is the take, so assume what about . So, you haveλ = 0

− ∆𝑢 = λ𝑢  𝑖𝑛 Ω ;  ∂𝑢
∂ν = 0 𝑜𝑛 Γ .

and is a solution obviously and therefore, is an eigenvalue and this𝑤 ≡  𝑐𝑜𝑛𝑠.  ≠ 0 λ = 0

implies that . So, this is the first Eigen value will be 0 and then what is the Eigenspace?λ
1

= 0

Suppose you have an Eigen function for lambda lambda equals 0. So, minus Laplacian w what

happens if w any Eigenfunction corresponding to 0 we have

Ω
∫ ∇𝑤 . ∇𝑤 = 0 ⇒ 𝑤 = 0 .

So, eigenspace of is 1 dimensional consisting of constants. So, we haveλ
1

= 0 {𝑤
𝑛
}

orthonormal basis for and then𝐿2(Ω) − ∆𝑤
𝑛

= λ
𝑛
𝑤

𝑛
  𝑖𝑛 Ω ;  

∂𝑤
𝑛

∂ν = 0 𝑜𝑛 Γ .

and you have 0 = λ
1

< λ
2

≤.... → ∞ .

So, this is the thing and you can also do the Rayleigh quotient characterization.



(Refer Slide Time: 18:34)

(3) (a), find the best constant in Poincare inequality. bounded open set. So, you haveΩ ⊂ ℝ𝑁 

|𝑢|
0,Ω

≤ 𝐶|𝑢|
1,Ω

 ,  ∀𝑢 ∈ 𝐻1
0
(Ω) .

So, what is the best possible constant? So, best constant 𝐶 ⇒ 1
𝐶 = inf

𝑢∈𝐻1
0
(Ω), 𝑢≠0

|𝑢|
1,Ω

|𝑢|
0,Ω

 .

But we know that if -first Eigenvalue of with that is the Dirichlet boundaryλ𝐷
1

∆ 𝑢 = 0 𝑜𝑛 Γ ,  

condition. Then, you know that λ𝐷
1

=
𝑢∈𝐻1

0
(Ω), 𝑢≠0

min Ω
∫|∇𝑢|2

Ω
∫|𝑢|2

=
𝑢∈𝐻1

0
(Ω), 𝑢≠0

min
|𝑢|

1,Ω

|𝑢|
0,Ω

 .

.⇒ 𝐵𝑒𝑠𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝐶 = 1

λ𝐷
1

equality achieved for .𝑢 = 𝑤
1

So, in any domain the first Eigenvalue of the Dirichlet Laplacian gives you the best constant for

the thing.
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(b) find the best constant in Poincare Wirtinger inequality. So, bounded,Ω ⊂ ℝ𝑁 𝑢 ∈ 𝐻1
0
(Ω),  



and then Now, if you have this, this can also be written as𝑢 = 1
|Ω|

Ω
∫ 𝑢 𝑑𝑥  |𝑢 − 𝑢|

0,Ω
≤ 𝐶 |𝑢|

1,Ω
 .

And then is such that So,|𝑢 − 𝑢|
0,Ω

≤ 𝐶 |𝑢 − 𝑢|
1,Ω

 . |𝑢| ∈ 𝐻1,  𝑢 − 𝑢
Ω
∫(𝑢 − 𝑢) = 0 .

Poincare Wirtinger is equivalent to saying |𝑢|
0,Ω

≤ 𝐶 |𝑢|
1,Ω

 ,  ∀ 𝑢 ∈ 𝐻1(Ω) ,  
Ω
∫ 𝑢 = 0 .

So, this is the same. So, the best constant is C implies 1
𝐶 = inf

∫𝑢=0, 𝑢≠0

|𝑢|
1,Ω

|𝑢|
0,Ω

 .

But then if you look at the (())(23:08) problem, you have So, these are the0 = λ𝑁
1

< λ𝑁
2

≤......

Neumann Eigenvalue. So,

− ∆𝑢 = λ𝑁𝑢 𝑖𝑛 Ω ;  ∂𝑢
∂ν = 0 𝑜𝑛 Γ .

So, these are the Neumann Eigenvalues which he saw and as I told you, you can do the so, then

by the variational characterization you should be so, you have to check this, so check will beλ𝑁
2

is the space of constant functions = eigenspaceλ𝑁
2

=
𝑢⊥𝑉

1

min Ω
∫|∇𝑢|2

Ω
∫|𝑢|2

  ,  𝑉
1

=

of λ𝑁
1

= 0.

So, this is the variation characterization which we saw and therefore, this implies that

λ𝑁
2

=
∫𝑢=0

min
|𝑢|

1,Ω

|𝑢|
0,Ω

 .  

So, the best constant in Poincare-Wirtinger is So, this way you have that.𝐶 = 1

λ𝑁
2

 .


