Sobolev Spaces and Partial Differential Equations
Professor. S. Kesavan
Department of Mathematics
Institute of Mathematical Sciences
Exercise — Part 12
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So, let us do some more exercises:

(1), let V and H be separable Hilbert spaces with a inner product (., )V and (.,.) u respectively
and norms ||. ||V and |[|. ||Hrespectively. Let us look V — H, the inclusion being dense and

compact. Let a: V X V — R be continuous, symmetric and V-elliptic by linear form. Let f € H.

(a): there exists a unique u € V such that a(u, v) = (f, v)H, forevery v € H.

So, the immediate consequence of the Lax-Milgram lemma. a is asymmetric V elliptic

continuous by linear form. So, if you look at
(), < WAL, < cllfIl vl . therefore v > (f,v),,

is a continuous linear functional on V. Therefore, by Lax-Milgram there exists a unique u.



(b): set G(f) = u. Show that G: H — H is continuous self adjoint and compact. We are of

course, talking of real Hilbert spaces that are understood to be dealing with real functions.

So, this we are trying to imitate what we did for the Laplacian. So, this is the abstract framework.

: : : 2
So, f — w is certainly linear, af|u|| y S a(u,u) = (f, u)H < c||f||||v||V

C
= [lull, = < fI-

And therefore, you have G — H — V is continuous and this inclusion is continuous and compact.

Therefore, G € L(H) is compact. It is self adjoint as we have seen many times.
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So, we have (Gf, g) = a(Gg, Gf) = a(Gf,Gg) = (f, Gg)H and therefore, G is self adjoint. So,

also (Gf, f) = a(Gf,Gf) = 0(||Gf||2. So, if Gf = 0= (f,v) =0, Vv €V, but then V is
dense in H implies (f, f) = 0 = f = 0. So, therefore, you have (Gf,f) > 0if f # 0.

(c): Im(G) is dense in V.
So, a is a symmetric elliptic continuous bilinear form.
Therefore, (u,v) = a(u, v) defines in the inner product and the norm, ||u||a = W is
equivalent to usual.
So, assume that assume v € V such that a(u,v) = 0, Vu € Range(G), butu = G(f). So,
and that means (f,v) =0, Vv e Vbut V c Hand therefore, this means
(v,v)Hz 0=>v=0
So, therefore by the Hahn Banach theorem the range of G is dense in V.
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(d): there exists an orthonormal basis of H, {un} and {)\n} sequence of positive numbers

such that a(un, V) = An(un, v), Vv € H. So, this is the eigenvalue problem and you can write

therefore, 0 < )\1 < 7\2 <.< 7\n.... - 00,

So, G: H = H is compact self adjoint bounded linear operator So, there exists Eigenvalues {un}

such that ([ 0. So, the sequence of Eigenvalues and dimension of Eigenspace of W is finite.
0 = u = 0 this implies G of un equal to 0 and

Now, i # Obecause Gu =pu = Gu
n n nn n



that implies that u n equal to 0 because G f f equal to 0 we know implies f equal to 0. And
therefore, mu n is not so, mu n cannot be 0 and so, we have and also

(Gun,un) > Oifun;t O:un> 0.

Therefore, you put A = L thenA — o and Gu = L u
n B n n n n

n

That means u = G (Anun) . That means a(un, V) = ()\nun, V) = }\n(un, v) ,Vv EH.

So, this proves it.

Now you can go ahead and try to pause the show so, try to show Rayleigh quotient

characterization of eigenvalues. So, you can write

R(v)=%,vEV,v¢0.

lwll”,
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So, this is the way you can study various eigenvalue problems based on this abstract framework.

So, we will give you one example now.
(2) (eigenvalue problem, Neumann case).

So, we have done the Dirichlet’s case in the lectures. So, we are now looking at Neumann from.
N .
So, let Q € R bounded open set and Q) = T and consider
. Ju
— Au = AuinQand — = OonT.
So, we will also say connected this case. So, now you rewrite this equation as:
—Au+u=A+ Du = Au.

So, we will take a(w, v) = [Vu.Vv + fww, V =H'(Q), H = L’ ().
Q Q

So, then on the hypothesis of problem 1 satisfied. So, this implies that there exists an

orthonormal basis {Wn} of LZ(Q) and {An} positive sequence such that a(wn, V) = An(wn, v), for

allv € H'(Q) .



So, this will imply that

[ow.Vww=@ -1 fwv, Vv eH (Q).
Q n n Q n

So, you set 7\” = An — 1 and therefore, since [ an. an >0= )\n >0, Vn.
Q
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So, what is the take, so assume what about A = 0. So, you have
— Au = Au inQ; %: OonT.

and w = cons. # 0 is a solution obviously and therefore, A = 0 is an eigenvalue and this

implies that A .= 0. So, this is the first Eigen value will be 0 and then what is the Eigenspace?

Suppose you have an Eigen function for lambda lambda equals 0. So, minus Laplacian w what

happens if w any Eigenfunction corresponding to 0 we have

So, eigenspace of ?\1 = 0 is 1 dimensional consisting of constants. So, we have {Wn}

a
orthonormal basis for LZ(Q) and then — Awn = Anwn inQ; % =0onT.

and you have 0 = 7\1 < 7\2 <> 00,

So, this is the thing and you can also do the Rayleigh quotient characterization.
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(3) (a), find the best constant in Poincare inequality. Q C R" bounded open set. So, you have

1
|u|0’Q < C|u|m, Yu € H O(Q).

. . . [ul
So, what is the best possible constant? So, best constant C = % =inf —
ueH (@), uz0 luly,

But we know that if A’ 1-ﬁrst Eigenvalue of A with u = O on T, that is the Dirichlet boundary

2
J1vul
O |u|1!‘z

. D . .
condition. Then, you know that A~ = min = min T
ueH (), u#0  [[uf® ueH" (), u#0 04
Q

1

= Best constant C = \/T
A
1

equality achieved for u = w..

So, in any domain the first Eigenvalue of the Dirichlet Laplacian gives you the best constant for

the thing.
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(b) find the best constant in Poincare Wirtinger inequality. So, Q C R" bounded, u € H 10(9),



u= |_£11|f udx and then |[u — u|OQ <C |u|1Q . Now, if you have this, this can also be written as
0 , :

|u—a|m§ C|u—ﬂ|m. And |u| € H', then u —u is such that [(u —u) = 0. So,
' ' )

: . . . : 1
Poincare Wirtinger is equivalent to saying |u|OQ <C |u|m, VueH (Q), fu=0.
, : 0

So, this is the same. So, the best constant is C implies L = inf .
c fu= ul,,
u=0, u#0 g

But then if you look at the (())(23:08) problem, you have 0 = ANI < 7\N2 <o So, these are the

Neumann Eigenvalue. So,
— A ="uing; %= OonT.

So, these are the Neumann Eigenvalues which he saw and as I told you, you can do the so, then

ANZ by the variational characterization you should be so, you have to check this, so check will be

[1vul?
N .
A _ = min

ulV 2
1 [lul
Q

, V L= is the space of constant functions = eigenspace

N
of A 1=0.

So, this is the variation characterization which we saw and therefore, this implies that

N o
A = min —= .
2 T
Ju=0

1

So, the best constant in Poincare-Wirtinger is C = . So, this way you have that.

[N
}\2



