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So, we were looking at eigenvalue problems. So, bounded open set and and weΩ ⊂ ℝ𝑁 Γ = ∂Ω

were looking at

− ∆𝑢 = λ𝑢  𝑖𝑛 Ω ,

𝑢 = 0 𝑜𝑛 Γ .     (𝑢 ≠ 0)

This is the eigenvalue problem. So, then we saw that there is orthonormal basis of{𝑤
𝑛
} 𝐿2(Ω)

(also ) with some factor in the front orthogonal the L2 for omega i of Eigenfunctions and𝐻1
0
(Ω)

0 < λ
1

≤ λ
2

≤... λ
𝑛

≤  ..... → ∞ 

So, − ∆𝑤
𝑛

= λ𝑤
𝑛
  𝑖𝑛 Ω  ,  𝑤

𝑛
∈ 𝐻1

0
(Ω) .

So, we repeat these values according to the geometric multiplicity of the dimension of the

Eigenspace. So, if lambda 2 has a 2 dimensional eigenspace, then lambda 2 and lambda 3 will be



called the same. So, then we prove the following theorem variational characterization : the

Rayleigh quotient 𝑅(𝑣) = Ω
∫|∇𝑣|2

Ω
∫|𝑣|2

 .

And then we had the following theorem that m is a positive integer. So,

.𝑉
𝑚

= 𝑠𝑝𝑎𝑛 {𝑤
1
, 𝑤

2
,..., 𝑤

𝑚
 } ,  𝑉

0
= {0} 

Theorem: we have that λ
𝑚

= 𝑅(𝑤
𝑚

) =
𝑣∈𝑉

𝑚
,𝑣≠0

max 𝑅(𝑣) =
𝑣⊥𝑉

𝑚−1
,𝑣≠0

min 𝑅(𝑣)

=
𝑊⊂𝐻1

0
(Ω),dim 𝑊=𝑚
min

𝑣∈𝑊,𝑣≠0
max 𝑅(𝑣) .

So, this was the min max or the intrinsic characterization. So, this was the theorem which we

proved last time.
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So, there was some errata:

Ω
∫ ∇𝑤

𝑖
. ∇𝑤

𝑗
 = 0 𝑎𝑛𝑑 

Ω
∫ 𝑤

𝑖
. 𝑤

𝑗
 = 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗 .



For 𝑖 = 𝑗,    
Ω
∫ ∇𝑤

𝑖
. ∇𝑤

𝑖
 = λ

𝑖
 𝑎𝑛𝑑 

Ω
∫ 𝑤

𝑖
. 𝑤

𝑗
 = 1 .

So, here I wrote an integral grad Wi square or something like that. So, there was something

wrong here and (())(04:19).

Now state and prove a similar theorem for the eigenvalues of symmetric real matrices.𝑁 × 𝑁

So, you know that for symmetric real matrix the Eigenvalues are all real so you can write them in

ascending in order ascending order for lambda 1 to lambda n and of course, the Eigenvalues will

be orthogonal in the usual sense in Euclidean space and therefore, you can state and prove

exactly the same kind of theorem which you have.

So, we also had that λ
1

=
𝑣≠0
min (𝐴𝑣,𝑣)

|𝑣|2 ,  λ
𝑁

=
𝑣≠0

max (𝐴𝑣,𝑣)

|𝑣|2 .  

So, this is the corresponding result you have for the eigenvalue and this is very useful in

computing the Eigenvalues of symmetric matrices.
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So, let us now continue with the (())(06:08) problem. So, we have the following lemma.

Lemma : let Then w is an Eigenfunction for .𝑤 ∈ 𝐻1
0
(Ω) ,  𝑤 ≠ 0 𝑠. 𝑡.  𝑅(𝑤) = λ

1
 . λ



proof: So, let Then and you have𝑣 ∈ 𝐻1
0
(Ω),  𝑡 ∈ ℝ, 𝑡 > 0.  𝑤 + 𝑡𝑣 ∈ 𝐻1

0
(Ω)

𝑅(𝑤 + 𝑡𝑣) ≥ 𝑅(𝑤) = λ
1
 .

which is because it is a minimum which is equal to R of w. So, now that means

Ω
∫∇(𝑤+𝑡𝑣).∇(𝑤+𝑡𝑣)

Ω
∫(𝑤+𝑡𝑣)2

≥ λ
1

=
Ω
∫ ∇𝑤. ∇𝑤 ,    𝑎𝑠𝑠𝑢𝑚𝑒 𝑡ℎ𝑎𝑡 

Ω
∫ 𝑤2 = 1.

So, we expand and cross multiply and simplify so, you get

𝑡2

Ω
∫ ∇𝑣. ∇𝑣 + 2𝑡

Ω
∫ ∇𝑤. ∇𝑣 +

Ω
∫ ∇𝑤. ∇𝑤 ≥ λ

1
[

Ω
∫ 𝑤2 + 2𝑡

Ω
∫ 𝑤𝑣 + 𝑡2

Ω
∫ 𝑣2]  .  

But grad v grad w equals lambda 1 w square, so, these two terms will get canceled so, divide by

2t and let t tend to 0. So, if you do that, then you will get the

Ω
∫ ∇𝑤. ∇𝑣 ≥ λ

1
Ω
∫ 𝑤. 𝑣  ,  ∀ 𝑣 ∈ 𝐻1

0
(Ω) .
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Apply to minus V as well and that will imply you get the opposite inequality so, you did integral

grad w grad v equals lambda 1 integral wv for every v in H1 0 of omega and therefore it is an

Eigenfunction because it satisfies the weak formulation of the eigenvalue problem. So, now we

have a very nice theorem:

Theorem: bounded open connected set, then is a simple eigenvalue. AnyΩ ⊂ ℝ𝑁 λ
1
 

Eigenfunction of does not change sign in . In particular, we can always choose to beλ
1
 Ω 𝑤

1
 

strictly positive in .Ω

proof: So, let w be any Eigenfunction corresponding to , then So, now ifλ
1

𝑤+, 𝑤− ∈ 𝐻1
0
(Ω) .

you choose in weak formulation. So, easy to see that𝑣 = 𝑤+ 𝑜𝑟 𝑤− 𝑅(𝑤+) = 𝑅(𝑤−) = λ
1
 .

So, this implies that are also Eigen functions. So, and therefore, by𝑤+, 𝑤− − ∆𝑤+ = λ
1
𝑤+ ≥ 0 

the strong maximum principle we have or in .𝑤+ > 0 𝑤+ ≡ 0 Ω 

Similarly, is strictly positive or is identically 0 in . But both and cannot be𝑤− 𝑤− 𝑤− 𝑤+ 𝑤−

simultaneously non-zero because they are the positive and negative parts of the w and therefore,

they cannot be simultaneously non-zero. So, therefore, you have that or .𝑤+ ≡ 0 𝑤− ≡ 0
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And now so, you have that the Eigenfunction does not change in fact you can have it strictly

positive therefore, if two linearly independent Eigen functions exist, they are orthogonal, then

. But we always know we can find orthogonal basis of Eigenvectors and Eigen∫ 𝑤
1
. 𝑤

2
≠ 0 

functions and therefore, that would not be possible because any two of them will always have

constant sign. So, the integral cannot vanish and therefore, you have that is simple.λ
1
 

So, this means what? So, you have 0 < λ
1

< λ
2

≤... λ
𝑛

≤  ..... → ∞ .  



So, you have here because of the strong maximum of principles. So, remark.

Remark: also applicable to

Ω
∫∑ 𝑎

𝑖𝑗
∂𝑢
∂𝑥

𝑗

∂𝑢
∂𝑥

𝑖
+

Ω
∫ 𝑎

0
𝑢𝑣 = λ

1
Ω
∫ 𝑢𝑣 .

let us say, the eigenvalue problem for the elliptic operators where satisfy ellipticityλ
1

𝑎
𝑖𝑗

condition and .𝑎
0

≥ 0 

Remark: So, this theorem is, now we have applied the strong maximum principle. So, which we

usually need u should be so, we needed the . But we already know that w𝑤 ∈ 𝐶2(Ω) ∩ 𝐶(Ω)

belongs to . Now what about well if by regularity .𝐶∞(Ω) 𝐶(Ω) 𝑁 ≤ 3 𝑤 ∈ 𝐻2(Ω) → 𝐶(Ω)

But this for almost every simple domain. But if you want then we need to assume more𝑁 ≥ 3

smoothness.

Remark: we said that if you have on the boundary , then this is the− ∆𝑢 = 𝑓,  𝑢 = 0 

displacement of a membrane.

So, if you have then this is nothing but vibration of a membrane. So,− ∆𝑢 = λ𝑢,  𝑢 = 0  𝑜𝑛 Γ ,  

is called the fundamental frequency and are called the overtones. So, if you have a drum, soλ
1

λ
𝑛

a drum is what is a drum it is a membrane which is stretched over a frame and then you beat this

membrane then you get so, the vibration will be given by these things.

And so, if you look at the n equals 1 omega equals 01 of course, here all the eigenvalues are

simple and you have u1 of x is sine by x which is of course, strictly positive in 01.
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Theorem: (monotonicity of the spectrum with respect to the domain). So, let beΩ
1
 𝑎𝑛𝑑 Ω

2
 

bounded domains in such that . So, let be the Eigenvalues of theℝ𝑁 Ω
1

⊂ Ω
2

{λ
𝑛
(Ω

𝑖
)}2

𝑖=1

Laplacian in , then for every n we haveΩ
𝑖

λ
𝑛
(Ω

1
) ≥ λ

𝑛
(Ω

2
) .

proof: Proof is just very simple. So, if you have u is in H10 of omega 1, so this implies that you

tilde is in H1 0 of omega 2 extension by 0 and further integral on omega 1 of mod grad u square

equals integral on omega 2 mod grad u tilde square dx and integral on omega 1 of mod u square

equals integral of omega 2 u tilde square. Therefore, the Rayleigh quotient with respect to omega

1 of u is the same as the Rayleigh quotient with respect to omega 2 of your tilde.

Now, the result follows immediately from the min max characterization. So, if W dimension W

equals n W in H10 of omega 1, then W tilde is set value tilde u in W, then dimension of W tilde

equals n and W tilde is contained in H10 of omega 2. So, every and Rayleigh quotients are the

same. So, the maximum over W is the same as the maximum over W tilde but the more spaces in

omega 2 which are of M dimension therefore, the minimum of the maximum will be less for the

bigger domain. So, it immediately follows from the characterization of the thing.
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So, now, we saw that the first Eigenfunction w1 does not change sin omega connected. So, if j is

greater than or equal to 2 integral w1 wj is 0. So, this implies that wj must change sign; you

cannot have something which is a constant sign anyway. So, we have a nodal line of an

Eigenfunction is a curve in omega other than gamma such that the Eigen function vanishes on it.

Nodal domain of an Eigenfunction is a sub domain of omega where the Eigenfunction is of

constant sign.

So, I have omega here so, suppose, u vanishes along a curve like this then u will be positive here

u will be negative here u will be 0 here u will be 0 on the boundary also. And these two are



called nodal domains. You could also have nodal domains like this. So, u equal to 0 is a closed

curve like this, then it could be positive here it could be negative here and so on. So, you could

have the mini Nodal domain. So, if you take in n equals 1 omega equals 01.

So, if you take sin 2 pi x, then it will have it will be like this sin 3 pi x will be like this and so on.

So, you have these are all Nodal domains this is Nodal domain this is Nodal domain and you

have. So, now we have a very beautiful theorem.
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Theorem: Let be an eigenvalue such that , then an Eigenfunction u ofλ
𝑘
 ,  𝑘 ≥ 2 λ

𝑘
< λ

𝑘+1
λ

𝑘

has at most k nodal domains.

proof : so, u Eigen function for with nodal domains .  In each we haveλ
𝑘

𝑙 {Ω
𝑖
}𝑙

𝑖=1
Ω

𝑖
 ,  

− ∆𝑢 = λ
𝑘
𝑢  𝑖𝑛 Ω

𝑖
  ,  𝑢 = 0 𝑜𝑛 ∂Ω .



So, define Then . Further for𝑢
𝑖

=  𝑢|
Ω

𝑖
 
 𝑖𝑛 Ω

𝑖
   𝑎𝑛𝑑 𝑢

𝑖
= 0 𝑖𝑛 Ω\Ω

𝑖
 . 𝑢

𝑖
∈ 𝐻1

0
(Ω) 

are linearly independent.𝑖 ≠ 𝑗,  Ω
𝑗

∩ Ω
𝑗

= ϕ,  ⇒  
Ω
∫ 𝑢

𝑗
𝑢

𝑖
= 0 ⇒ {𝑢

𝑖
} 

And this implies that . So,𝑉 = 𝑠𝑝𝑎𝑛 {𝑢
1
,... 𝑢

𝑙
} 𝑎𝑛𝑑 dim  𝑉 = 𝑙

Ω
𝑖

∫ |∇𝑢
𝑖
|2 = λ

𝑘
Ω

𝑖

∫ |𝑢
𝑖
|2 ⇒

Ω
∫ |∇𝑢

𝑖
|2 = λ

𝑘
Ω
∫ |𝑢

𝑖
|2 .  

And since all the are disjoint, this implies that So, now we areΩ
𝑖

𝑅(𝑣) = λ
𝑘
 ,  ∀ 𝑣 ∈ 𝑉.  

through.
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So, and you have that the and therefore, thedim  𝑉 = 𝑙 𝑎𝑛𝑑 λ
𝑘

< λ
𝑘+1

 
𝑣∈𝑉,𝑣≠0

max 𝑅(𝑣) = λ
𝑘

and therefore, this implies that and lambda k is k plus 1 is bigger and thisdim 𝑉 = 𝑙 λ
𝑙

≤ λ
𝑘
 

these two together implying since we are writing in increasing order that .𝑙 ≤ 𝑘 

That proves the theorem.

So, that proves that at most k nodal domain.



Remark: A slight modification of this proof using more sophisticated properties of

Eigenfunctions says that the hypothesis not necessary. Therefore, for every k we haveλ
𝑘

< λ
𝑘+1

that the Eigen function of lambda k has at most k nodal domains.

This is called the Courant Nodal line theorem and you can see this for instance in Courant and

Hilbert volume 1. Methods of mathematical physics, that is the title of the book. So, Courant

nodal line theorem.

So, for instance if you take since an Eigenfunction of must change sign there exists at𝑘 = 2,  λ
2
 

least 2 nodal domains. But, by Courant theorem now, there exists at most 2 nodal domains,

which implies there exist exactly 2 nodal domains for every Eigen function of .λ
2

So, for does exactly 1 nodal domain for the exactly 1 Nodal domain is not true for k greaterλ
1

λ
2

equal to 3.

For instance in the square in we have(0, 1) × (0, 1) ,  λ
2

= λ
3

= 5π2 .

So, Eigen function of , which is also equal to has only 2 nodal domains. So, we just see thatλ
3

λ
2

the min max has many applications. These are just some of the applications.

And the spectrum of the Laplacian has several very, very interesting properties. It gives us a lot

of geometric information about the domain. And it is a very fascinating subject, which is in the

confluence of geometry, functional analysis and partial differential equations.


