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So, let us look at some examples.

(1) So, you take . So, you have the problem𝑁 = 1,  Ω = (0, 1) 



− 𝑢'' = λ𝑢 𝑖𝑛 (0, 1)  ;  𝑢(0) = 𝑢(1) = 0 .

So, multiplying pi u and integrating you get

0

1

∫ |𝑢'|2𝑑𝑥 = ∫ λ𝑢 ⇒ λ ≥ 0.

If then But it vanishes at the boundary points and therefore,λ = 0,  𝑢' = 0 ⇒ 𝑢 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

that implies that and that cannot be an eigenvector. So, . So, in that case the general𝑢 = 0 λ > 0

solution u double dash plus lambda u equal to 0 lambda greater than 0 this implies the more

general solution is 𝑢(𝑥) = 𝐴 cos  ( λ𝑥) + 𝐵 sin( λ𝑥)  .

So, now you have . So, and then𝑢(0) = 0 ⇒ 𝐴 = 0 ⇒ 𝐵 ≠ 0 (𝑎𝑠 𝑢 ≠ 0) 𝑢(𝑥) = 𝐵 sin( λ𝑥) 

and this means that𝑢(1) = 0 λ = 𝑛π ⇒ λ = 𝑛2π2 .

So, the only eigenvalues of this problem are and the corresponding Eigenfunctions are𝑛2π2 

some . Now, are there any others which we cannot because this is a we know from the𝑐 sin 𝑛π𝑥

Fourier sine series that is an orthonormal basis for In fact you can do so,{ 2sin 𝑛π𝑥} 𝐿2(0, 1) .

this is the Fourier sine series. But you can even prove it other ways: suppose you have the

with𝑓 ∈ 𝐿2(0, 1)
0

1

∫ 𝑓 sin 𝑛π𝑥 = 0 ,  ∀ 𝑛 = 1, 2, 3,...

Then extend it extend to with as an odd function. So, you just put .(− 1, 1) 𝑓(− 𝑥) =− 𝑓(𝑥) 

So, then
−1

1

∫ 𝑓 sin 𝑛π𝑥 = 2
0

1

∫ 𝑓 sin 𝑛π𝑥 = 0 ⇒
−1

1

∫ 𝑓 = 0 𝑎𝑛𝑑 
−1

1

∫ 𝑓 cos 𝑛π𝑥 = 0,  ∀ 𝑛 = 1, 2,....

And therefore, from the Fourier, from the Fourier series you know that this implies that f equal to

0 and therefore, that shows that the sin forms a complete orthonormal basis for the . And𝐿2(0, 1)

therefore, there are no others because you know but from the theory the Eigenfunctions form a



complete orthonormal basis and therefore, all the Eigenfunctions Eigenvectors and Eigen

functions are given only pi this, there is no other solution.
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So, the next example you take and take . Then if you take𝑁 = 2 Ω = (0, 1) × (0, 1)

− ∆𝑢 = λ𝑢 𝑖𝑛 Ω  ;  𝑢 = 0  𝑜𝑛 Γ.

So, now if you take Λ
𝑛,𝑚

= (𝑛2 + 𝑚2)π,  𝑊
𝑛,𝑚

= sin 𝑛π𝑥 sin 𝑛π𝑦 ∈ 𝐻1
0
(Ω)

and you also have − ∆𝑊
𝑛,𝑚

= Λ
𝑛,𝑚

𝑊
𝑛,𝑚

 

Also since is an orthonormal basis for , implies that{ 2sin  𝑛π𝑥} 𝐿2(0, 1) {2 sin  𝑛π𝑥 sin  𝑛π𝑦}

is an orthonormal basis for And therefore, there are no other Eigenvalues𝐿2((0, 1) × (0, 1)).  

or the Eigenfunctions because you already have an orthonormal basis here and therefore, you

have these are the only solutions of this. So, when we wrote that

0 ≤ λ
1

≤ λ
2

≤.....

If then all are distinct. Because you have .𝑁 = 1 ,  λ
𝑛

= 𝑛2π2
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But in the case of example 2, , then and𝑁 = 2,  Ω = (0, 1) × (0, 1) λ
1

= Λ
1

= 2π2 

. So, and the corresponding Eigen so it means this Eigen space hasλ
2

= λ
3

= Λ
12

= Λ
21

= 5π2

dimension 2 and the Eigen vectors which span the dimension are

So, these are the two basis functions for the Eigenspace{sin π𝑥 sin 2π𝑦,  sin 2π𝑥 sin π𝑦} .

connected for . And therefore, when the number of so, as so, be number we repeat lambda n5π2

as many times as its geometric multiplicity. So, you have

0 < λ
1

< λ
2

= λ
3

< λ
4
.....

So, now we want to give a variational characterization of the eigenvalues.
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So, we define for This is called the Rayleigh quotient.𝑣 ≠ 0,  𝑣 ∈ 𝐻1
0
(Ω),  𝑅(𝑣) = Ω

∫|∇𝑣|2

Ω
∫|𝑣|2

−

So, we have the following theorem.

Theorem: Let m be a positive integer, then



λ
𝑚

= 𝑅(𝑤
𝑚

) =
𝑣∈𝑉

𝑚
, 𝑣≠0

max 𝑅(𝑣) =
𝑣⊥𝑉

𝑚−1
, 𝑣≠0

min 𝑅(𝑣) =
𝑊⊂𝐻1

0
(Ω), dim(𝑊)=𝑚

min
𝑣∈𝑊,𝑣≠0

max 𝑅(𝑣) ,

where In particular𝑉
𝑚

= 𝑠𝑝𝑎𝑛{𝑤
1
, 𝑤

2
,..., 𝑤

𝑚
},  𝑉

0
= {0}. λ

1
=

𝑣∈𝐻1
0
(Ω),𝑣≠0

min Ω
∫|∇𝑣|2

Ω
∫|𝑣|2

 .

So, this is called the Rayleigh quotient characterization. It is called a variational characterization

because it talks of minima or Maxima of the Rayleigh quotient over various constraint minima

and maxima.

So, the first three are clear what we are saying the last one this is called an intrinsic

characterization this min max the first three depends on the Eigenvectors which you have chosen

because the choice of Eigenvectors can be of an orthonormal basis can be different union then it

is not there is nothing standard about them because you can choose w m or minus wm whatever

you like.

So, it does not matter, but the last one does not depend it is a frame independent thing it does not

depend on the choice of the Eigen function, it says you take any m dimensional space and take

the maximum of the value question there and minimize that maximum over all m dimensional

spaces that will give you the lambda m. So, this is a very beautiful characterization of the

Eigenvalues and therefore, in particular when m equals 1 you have that it is just a minimum over

the entire space. So, this is the. So, we will prove this.
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proof: So, Now, let us take any . So, can be written− ∆𝑤
𝑚

= λ
𝑚

𝑤
𝑚

⇒ λ
𝑚

= 𝑅(𝑤
𝑚

).  𝑣 ∈ 𝑉
𝑚

𝑣

as Remember that𝑣 =
𝑖=1

𝑚

∑ α
𝑖
𝑤

𝑖
.

Ω
∫ ∇𝑤

𝑖
. ∇𝑤

𝑗
= 0 𝑎𝑛𝑑 

Ω
∫ 𝑤

𝑖
. 𝑤

𝑗
= 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗 .

So, this is what we have. So, if you compute the Rayleigh quotient on this using this expansion

then So But𝑅(𝑣) = 𝑖=1

𝑚

∑ λ
𝑖
α2

𝑖

𝑖=1

𝑚

∑ α2
𝑖

≤ λ
𝑚

 . sup
𝑣∈𝑉

𝑚
, 𝑣≠0

 𝑅(𝑣) ≤ λ
𝑚

 . 𝑤
𝑚

∈ 𝑉
𝑚

 𝑎𝑛𝑑 𝑅(𝑤
𝑚

) = λ
𝑚

 .



⇒
𝑣∈𝑉

𝑚
, 𝑣≠0

max 𝑅(𝑣) = λ
𝑚

 .

Now, let . If you write the Fourier expansion, this will be equal to𝑣 ⊥ 𝑉
𝑚−1

So, if we set Then𝑣 =
𝑘=𝑚

∞

∑ α
𝑘
𝑤

𝑘
=

𝑙 ∞
lim
→ 𝑘=𝑚

𝑙

∑ α
𝑘
𝑤

𝑘
 . 𝑣

𝑙
=

𝑘=𝑚

𝑙

∑ α
𝑘
𝑤

𝑘
.

𝑅(𝑣
𝑙
) = 𝑘=𝑚

𝑙

∑ λ
𝑘
α2

𝑘

𝑘=𝑚

𝑙

∑ α
𝑘

2
≥ λ

𝑙
 .

And therefore, since we have that for all And𝑣
𝑙

→ 𝑣,  𝑣 ≠ 0,  𝑣 ⊥ 𝑉
𝑚−1

,  𝑅(𝑣) ≥ λ
𝑚

 .

𝑤
𝑚

∈ 𝑉
𝑚−1

 𝑎𝑛𝑑 𝑅(𝑤
𝑚

) = λ
𝑚

 ⇒
𝑣⊥𝑉

𝑚−1
, 𝑣≠0

min 𝑅(𝑣) = λ
𝑚

 .
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And in particular, if we get that𝑚 = 1,  λ
1

=
𝑣∈𝐻1

0
(Ω),𝑣≠0

min 𝑅(𝑣) .

So, finally, let So, now, Why is this so? So,𝑊 ⊂ 𝐻1
0
(Ω),  dim  𝑊 = 𝑚. 𝑊 ∩  𝑉⊥

𝑚−1
≠ {0} .

that means  there exists a so such . Therefore,𝑤 ∈ 𝑊,  𝑤 ⊥ 𝑉
𝑚−1

,  𝑤 ≠ 0



So, this implies that
𝑣∈𝑊,𝑣≠0

max 𝑅(𝑣) = 𝑅(𝑤) ≥ λ
𝑚

⇒
𝑊⊂𝐻1

0
(Ω),dim 𝑊=𝑚
min  

𝑣∈𝑊,𝑣≠0
max 𝑅(𝑣) ≥ λ

𝑚
 .

𝑊⊂𝐻1
0
(Ω),dim 𝑊=𝑚
min  

𝑣∈𝑊,𝑣≠0
max 𝑅(𝑣) = λ

𝑚
 .

min W in H1 0 of omega dimension w equals m max v not equal to 0 V in W of R of v, this is

greater than or equal to lambda m.

So, we prove this theorem completely. So, as I said in the last one, the min max principle is an

intrinsic one it does not depend on the Eigenfunctions at all and therefore, it is a very powerful

result and we will see several applications of this presently.


