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(2) (a) Let ϕ(𝑟) = 1
2π log(𝑟) ,  𝑖𝑓 𝑁 = 2  

- equal surface measure of the unit ball.=  − 1
(𝑁−2)α

𝑁
𝑟2−𝑁  ,   𝑖𝑓  𝑁 ≥ 3 .  α

𝑁



So, bounded domain and . Let, DefineΩ ⊂ ℝ𝑁 ∂Ω = Γ 𝑥 ∈ Ω.  

𝑢(𝑥) =
Γ
∫ ϕ(|𝑦 − 𝑥|)𝑑σ(𝑦) .

show that u is harmonic.

solution: so let us take So𝐵(𝑥, 𝑟) ⊂ Ω.  

𝐵(𝑥,𝑟)
∫ 𝑢(𝑦)𝑑𝑦 =

𝐵(𝑥,𝑟)
∫

Γ
∫ ϕ(|𝑧 − 𝑥|)𝑑σ(𝑧)𝑑𝑦 =

Γ
∫

𝐵(𝑥,𝑟)
∫ ϕ(|𝑧 − 𝑥|)𝑑𝑦 𝑑σ(𝑧)

=
Γ
∫ ω

𝑁
𝑟𝑁ϕ(|𝑧 − 𝑥|)𝑑σ(𝑧) 

⇒ 1

ω
𝑁

𝑟𝑁
𝐵(𝑥,𝑟)

∫ 𝑢(𝑦)𝑑𝑦 =
Γ
∫ ϕ(|𝑧 − 𝑥|)𝑑σ(𝑧) = 𝑢(𝑥)

therefore u has mean value property and we know therefore that it means it is harmonic.
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(b) Let compute the integral𝑅 > 0.
|𝑥|=𝑅

∫ ϕ(|𝑦 − 𝑥|)𝑑σ(𝑦) ,  |𝑥| ≤ 𝑅 .

solution: by symmetry = constant , for all
|𝑥|=𝑅

∫ ϕ(|𝑦 − 𝑥|)𝑑σ(𝑦) 𝑥 ∈ ℝ𝑁,  |𝑥| ≤ 𝑅.

And therefore, and for harmonic. So, if you call this as u of x so|𝑥| < 𝑅

∆𝑢 (𝑥) = 0,  |𝑥| < 𝑅  ,  𝑢(𝑥) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑛 |𝑥| = 𝑅 .

⇒ 𝑢(𝑥) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑜𝑟 |𝑥| ≤ 𝑅 .

by the uniqueness of the solution to the Dirichlet power. So, implies that

𝑢(𝑥) = 𝑢(0) =
|𝑦|=𝑅

∫ ϕ(𝑅)𝑑σ(𝑦) .

So, if you have so that is If so this is equal to𝑁 = 2,  1
2π log(𝑅) 2π 𝑅 = 𝑅 log  𝑅 . 𝑁 ≥ 3,  

−1

α
𝑁

(𝑁−2)𝑅𝑁−2 α
𝑁

𝑅𝑁−1 =− 𝑅
𝑁−2  .  



(4) Let mollifiers, satisfying mean value property for every .ϵ > 0,  ρ
ϵ

− 𝑢: ℝ𝑁 → ℝ,  𝑥 ∈ ℝ𝑁

That means Then show that u equals𝑢(𝑥) = 1

α
𝑁

𝑟𝑁−1
|𝑦−𝑥|=𝑟

∫  𝑢(𝑦)𝑑σ(𝑦) , 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥.  

In particular .ρ
ϵ

* 𝑢 = 𝑢 . 𝐶∞(ℝ𝑁)

So, a harmonic function is automatically infinitely differentiable from this true in any omega also

all you have to do is to take whatever proof you are going to do now we will have take epsilon

such that the ball center x radius epsilon is contained in omega that is all we have to do epsilon

small enough. Here, we are of course at liberty to take any epsilon we like and therefore the

proof is the same so this proof that it is a regularity statement that if you have a harmonic

function then it is infinitely differentiable in the interior of the domain.
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solution: soρ
ϵ

* 𝑢 = 𝑢
ϵ
 .

𝑢
ϵ

=
ℝ𝑁
∫ ρ

ϵ
(𝑥 − 𝑦)𝑢(𝑦)𝑑𝑦 = 𝑘

ϵ𝑁
𝐵(𝑥,ϵ)

∫ ρ ( |𝑥−𝑦|
ϵ )𝑢(𝑦)𝑑𝑦 

= 𝑘

ϵ𝑁
0

ϵ

∫ ρ( 𝑟
ϵ )

|𝑦−𝑥|=𝑟
∫ 𝑢(𝑦)𝑑σ(𝑦) 𝑑𝑟.

= 𝑘

ϵ𝑁 α
𝑁

0

ϵ

∫ 𝑟𝑁−1ρ( 𝑟
ϵ )𝑢(𝑥)𝑑𝑟

= 𝑢(𝑥)
𝐵(𝑥,ϵ)

∫ ρ
ϵ
(𝑦) 𝑑𝑦 = 𝑢

ϵ
(𝑥)

(4)(a) Let omega bounded domains in . Let Let𝑉 ⊂⊂ Ω, 𝑉, Ω ℝ𝑁 𝑟 = 1
4 𝑑(𝑉, Γ),  Γ = ∂Ω .

Let be a non-negative harmonic function. Show that𝑥, 𝑦 ∈ 𝑉,  |𝑥 − 𝑦| = 𝑟.  𝑢: Ω → ℝ 

𝑢(𝑥) ≥ 1

2𝑁 𝑢(𝑦) .



Solution: so we have x y in v mod x minus y equal to r now u is harmonic so u of x is equal to1

by omega n r power n 2 power n r power n this is the volume of the ball of center x radius 2 r and

u of z dz.

Now u is non negative therefore I can write this as greater than equal to integral 1 by omega n 2

power n r power n integral by r uz dz. So, this is because it is harmonic and so this is harmonic

so you have a mean value property and this is because u is greater than equal to 0. So, you have a

ball of radius 2r so this is x and this is 2r and then you have y here and therefore a ball of radius r

is contained in that.

But what is that again by the mean value property this is equal to 1 by 2 power n u of y again

mean value property. So, ux is greatly equal to 1 by 2 power N similarly, you have u of y will be

similarly 1 by 2 power n u of x. And therefore, you have that 2 power n u of y will be greatly

equal to u of x greatly equal to 1 by 2 power n u of y. So, that means you can always compare

values between 2 points with some which are close enough.

( b) Harnack’s inequality: sub-domain, harmonic in There exists𝑉 ⊂⊂ Ω, 𝑢 ≥ 0 Ω. 𝑐 > 0

(depending on ) s.t. In particular,𝑉 1
𝑐 𝑢(𝑦) ≤ 𝑢(𝑥) ≤ 𝑐𝑢(𝑦) ,   ∀ 𝑥, 𝑦 ∈ 𝑉 .

sup
𝑉 

𝑢 ≤ 𝐶 inf
𝑉

 𝑢 .

Solution: so is compact and therefore can be covered by a chain of finitely many balls𝑉 {𝐵
𝑖
}𝑘

𝑖=1

each of radius r (as in (a)). And so you have to cover it like this. And you have𝐵
𝑖

∩ 𝐵
𝑗+1

≠ ϕ.  

x in b1 and y. So, in each of these bonds you have 1 by 2 power n there are at most k balls that

means if then and that will be the result.𝑥, 𝑦 ∈ 𝑉 𝑢(𝑥) ≥ 1

2𝑁𝑘 𝑢(𝑦) 
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(5) (a): bounded open set,Ω ⊂ ℝ𝑁 Γ = ∂Ω,  𝑓 ∈ 𝐿2(Ω),  𝑢 ∈ 𝐻1(Ω) ∩ 𝐶(Ω) 𝑠. 𝑡.  

Ω
∫ ∇𝑢. ∇𝑣 𝑑𝑥 +

Ω
∫ 𝑢𝑣𝑑𝑥 =

Ω
∫ 𝑓𝑣 𝑑𝑥 ,  ∀ 𝑣 ∈ 𝐻1

0
(Ω) .

Show that the minimum of min {inf
Γ
 𝑓,  inf

Ω
 𝑓} ≤ 𝑢(𝑥) ≤ max {sup

Γ
 𝑓,  sup

Ω
 𝑓} ,  ∀ 𝑥 ∈ Ω.

solution: you have to take So, you have𝑚 = min {inf
Γ
 𝑓,  inf

Ω
 𝑓} ,  𝑢 − 𝑚 ∈ 𝐻1(Ω) .



Ω
∫ ∇(𝑢 − 𝑚)∇𝑣 −

Ω
∫(𝑢 − 𝑚)𝑣 =

Ω
∫(𝑓 − 𝑚)𝑣 .

So, now you take And therefore you will get𝑣 = (𝑢 − 𝑚)− ∈ 𝐻1
0
(Ω) .

−
Ω
∫ |∇(𝑢 − 𝑚)−|2 −

Ω
∫ |(𝑢 − 𝑚)−|2 =

Ω
∫(𝑓 − 𝑚)(𝑢 − 𝑚)− 

Now is non negative so this is also non negative so this everything is non negative and𝑓 − 𝑚

this side everything is less than or equal to 0 and therefore you have equal to 0. And this implies

that So, similarly you take By the(𝑢 − 𝑚)− = 0 ⇒ 𝑢 = 𝑚.  𝑀 = max {sup
Γ
 𝑓,  sup

Ω
 𝑓}.

same argument .𝑀 − 𝑢 ≥ 0
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(b): if show that𝑓 = 0,  |𝑢|
0,∞,Ω

≤ |𝑢|
0,∞,Γ

  .

solution: both u and -u satisfy (*) , so you have𝑓 = 0 ⇒

𝑢(𝑥) ≤ sup
Γ
 𝑢 ≤ |𝑢|

0,∞,Γ
 ⇒ |𝑢(𝑥)| ≤ |𝑢|

0,∞,Γ

− 𝑢(𝑥) ≤ sup
Γ

−  𝑢 ≤ |𝑢|
0,∞,Γ

 ⇒ |𝑢|
0,∞,Ω

≤ |𝑢|
0,∞,Γ



(6): Let Show thatΩ = {𝑥 ∈ ℝ𝑁:  |𝑥| > 1} ,  𝑢 ∈ 𝐻1(Ω),  ∆𝑢 + 𝑢 = 0 𝑖𝑛 Ω.

|𝑢|
0,∞,Ω

≤ |𝑢|
0,∞,Γ

  .

So, this is like the previous theorem on a problem except that we have an unbounded domain so

you take . So, you so now this becomes , so that is now aΩ
𝑛

= {𝑥 ∈ ℝ𝑁:  1 < |𝑥| < 𝑛} Ω
𝑛

bounded domain  and therefore you have that so let .Γ
𝑛

= {𝑥:  |𝑥| = 𝑛}

So, by 5 (b), and then implies|𝑢|
0,∞,Ω

≤ max {|𝑢|
0,∞,Ω

 ,  |𝑢|
0,∞,Γ

𝑛

} 𝑢 ∈ 𝐻1(Ω)

So, it cannot be positive on a set of positive measure as you as the|𝑢|
0,∞,Γ

𝑛

→ 0 𝑎𝑠 𝑛 → ∞.  

domain grows. So, as this thing and also , from this you conclude that hence|𝑢|
0,∞,Ω

𝑛

→ |𝑢|
0,∞,Ω

the result.


