Sobolev Spaces and Partial Differential Equations
Professor. S. Kesavan
Department of Mathematics
Institute of Mathematical Sciences
Exercises — Part 10
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We will do some more exercises, the first one is called the Saint Venant problem. So, you think
of an infinite beam of uniform cross sections, so omega is a container with some inclusions,
think of concrete with steel rods stuck inside. So, the rods are going through along with this
beam and so this is the cross-section of the beam and these inclusions here denote the places
occupied by the cross sections of the steel rods. So, this is called so we want to study what is

called the torsional rigidity of this beam which means how it is, how stiff it is and so on.

(1) Let Q¢ R’ be a bounded open connected set, r, = GQO. Let some {Qi}mizlbe open

mutually disjoint sub domains that means they are also open sets and they are connected

themselves. So, Fi = OQi, 1 < i < m and we write let |Qi| =a,, 1 < i £ m and let omega

Q=0 O\Umi= L EI That means you remove it from the portion which is other than the black

shaded region. Find u such that
—Au=2 inQ,

u=20 onFO,

u=c onl ,1<i<m, c, > 0 — unknown constant.



a .
[=~do =2a ,1<i<m.
Fav i

So, u is called a warping function on omega so this is the thing and the torsional rigidity is

determined in terms of the gradient of u. Show that there exists a unique solution.

solution: step I(uniqueness): So, let u U be two solutions and you saidw =u_, — u . So

1
- Au=0inQandw=OonF0.
2 m
So, 0=—fAaw.wdx =[|Ww|]" — 3 [w3-do
Q Q i=1T,
m )

_ 2 ou, u,
_£|VW| - ,Zl(cl,i_cz,i)l[( — — —2)do
= .

ou, ou, . 2
But then, — — = 0. So, this means that [ |[Vw| = 0=w = 0on FO = w = Oby

dav av
Q
Poincare inequality. So u =u,.
So now, we want to show the existence of a solution.
Step 2. So, let ¢ = (cl, - cm) e R". So you define u(¢) = v, solution of

— Av=2 in(,

So, this is a straightforward Dirichlet problem and everything is fine therefore, there exists a

unique v. And let w € H ! O(Q) such that



— Aw = inQ

v=0 onT
0

this also exists there exists unique w so this also is fine.
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d=(d,..d ) ER".

So now, if you take A: ¢ — d is linear from R"—> R™ . Assume that A(c) = 0.



m

That means 0 =— [ Av.vdx =f|Vv|2— > cifg—:do =>v=00n Fi:>v =0
Q Q i=1 T

i
i

=>c=0.

So, A is 1-1 implies onto and invertible. So, given d € R™ there exists a unique ¢ € R™ such that
A(c) =d. Now you define T(c) = A(c) + B. Now if you take di = Zai — Bi. Then this is

imply that T(c) = Zai.

So now, if you set u equal to u of ¢ which is equal to v of course plus w, then you have minus
Laplacian w equal to 2 in omega because you see minus Laplacian w is 0. And for this 1 it is 2 so
when you add them you will get 2 w equals 0 on gamma not and w equal to ci on gamma i and
integral dw by d nu on gamma 1 this is nothing but di which is equal to 2 ai dw by d nu plus dv
by d nu this equal to, u. So, integral gamma du by d nu d sigma equal to integral d w by d nu
which is equal to beta i beta i1 plus lambda of ¢ and that is equal to t ¢ equals 2 ai. So, this is also

so you have it satisfies all these conditions 1 less equal to i listening to n.
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step 3: claim: c > 0,1<i< oo

So, let Q2 be smooth enough so this implies that u € H ? (©2) and that since we will be in ¢ of the

omega bar since we are contained in R2 by the Sobolev embedding theorem. So then, if you take
x, € Q, then such that u(x O) = infxea u(x). So, suppose x 0 € Q. This implies Vu(xo) = Oand
Au(x 0) > 0, but that is not possible since Au =— 2.

So, that is not possible so let x, € Fi, then you have this implies that minimum of u is in fact ci

but then if you have so this is the variation so this is gamma is. So, c, is a minimum of u that

means if you approach it along the normal direction here it is a decreasing function so this means

that%s 0\0nFi.Butngudc = 2ai> 0:>x0€F0:>u(x) > Oonﬁ\f‘0 =>c > 0.
I

L

So, this proves the smoothness needed only in the last step.

So, the torsional rigidity is defined as integral

S@Q) = [ |Vu|’dx.
Q



