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We will now study a very important property of second order elliptic equations. These are

called Maximum Principles, you might have come across this word already when studying

complex analysis and that is because the real and imaginary parts of analytic functions satisfy

they are harmonic. Therefore, they satisfy and that is why you have maximum∆𝑢 = 0 

principles there also.



So, throughout this section we will assume that bounded set andΩ ⊂ ℝ𝑁 Γ = ∂Ω

. So, all these functions are the same and satisfies an𝑎
𝑖,𝑗

  ,  1 ≤ 𝑖, 𝑗 ≤ 𝑁 ,  𝑎
0

∈ 𝐿∞(Ω) 𝑎
𝑖,𝑗

 

ellipticity condition.

So, let me remind you of that, so for every, almost every and there exists an𝑥 ∈ Ω ξ ∈ ℝ𝑁

,α > 0 

.
𝑖,𝑗=1

𝑁

∑ 𝑎
𝑖,𝑗

(𝑥)ξ
𝑖
 ξ

𝑗
≥ α ||ξ||2

So, this is called the uniform ellipticity condition for these operators, so we have the

following theorem.

Theorem: Let be such that𝑓 ∈ 𝐿2(Ω) ,  𝑢 ∈ 𝐻1(Ω) ∩ 𝐶(Ω) 

—---------(*)
Ω
∫

𝑖,𝑗=1

𝑁

∑ 𝑎
𝑖𝑗

(𝑥) ∂𝑢
∂𝑥

𝑗

∂𝑣
∂𝑥

𝑖
 𝑑𝑥 +

Ω
∫ 𝑎

0
𝑢𝑣 𝑑𝑥 =

Ω
∫ 𝑓𝑣 𝑑𝑥 .

for every . Then the following holds𝑣 ∈ 𝐻
0

1(Ω)

(i) if , then .𝑓 ≥ 0 𝑖𝑛 Ω,  𝑢 ≥ 0 𝑖𝑛 Γ 𝑢 ≥ 0 𝑖𝑛 Ω

(ii) if , then𝑎
0

= 0 𝑎𝑛𝑑 𝑓 ≥ 0 𝑖𝑛 Ω 𝑢 ≥ inf
Γ
 𝑢   𝑖𝑛 Ω .

(iii) if , then in .𝑎
0

= 0 𝑎𝑛𝑑 𝑓 = 0 𝑖𝑛 Ω inf
Γ
 𝑢 ≤ 𝑢 ≤ sup

Γ
 𝑢 Ω
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The boundary holds the clue. So proof, so u is in H1 of omega, so this implies mod u, u plus,

u minus are all in H1 of omega, we have seen this long ago and even then I commented that

this is a reason for maximum principles to hold. So, then if u is greater than or equal to 0 on

gamma this means that u minus equal to 0 on gamma, because u equals u plus minus u minus

and mod u equals u plus plus u minus and therefore, u equals mod u, since u is greater than

equal to 0, so u minus of 0 equals 0 on gamma that means u minus belongs to H1 0 of omega.

So, we can use u minus as a test function in star, we can put u equals…we can set v equals i

minus in star. If you do this and then you recall that u equals u plus minus u minus. What

about the supports of u plus intersection support of u minus intersect only on the set that is

contained in, in fact it is contained in the set of all x sets ux equal to 0. And vanish𝑢, 𝑢+, 𝑢− 

on and almost everywhere on the set .{𝑢 = 0} ∂𝑢+

∂𝑥
𝑖

, ∂𝑢−

∂𝑥
𝑖

= 0 {𝑢 = 0} 

So, these are all properties which we prove whenever you have u equals constant, then you

have u plus du by d xi du minus by dx i there of course, the set may be of measure 0 that is a

different point, but then even if it is not of measure 0 this is always true. And therefore, if you

substitute, you have

Ω
∫

𝑖,𝑗=1

𝑁

∑ 𝑎
𝑖𝑗

(𝑥) ∂𝑢
∂𝑥

𝑗

∂𝑢−

∂𝑥
𝑖

 𝑑𝑥 +
Ω
∫ 𝑎

0
𝑢𝑢− 𝑑𝑥 =

Ω
∫ 𝑓𝑢− 𝑑𝑥 



−
Ω
∫

𝑖,𝑗=1

𝑁

∑ 𝑎
𝑖𝑗

(𝑥) ∂𝑢−

∂𝑥
𝑗

∂𝑢−

∂𝑥
𝑖

 𝑑𝑥 +
Ω
∫ 𝑎

0
|𝑢−|2 𝑑𝑥 =

Ω
∫ 𝑓𝑢− 𝑑𝑥

Now this f is non negative u minus is non negative, so this integral is non negative, a

naught…. I forgot to say that already, so this additional condition is a naught greater than

equal to 0 in omega, so these two conditions are necessary.
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So, a naught is non-negative u minus square this non negative, so this integral is also non

negative and by the ellipticity condition this integral is also non negative. Therefore, the left

hand side is less than or equal to 0, LHS is less than equal to 0, RHS is greater than equal to



0, so the whole thing has to be 0. If that is 0, then each of the terms on the left hand side is

equal to 0 and by the ellipticity condition,

0 =
Ω
∫

𝑖,𝑗=1

𝑁

∑ 𝑎
𝑖𝑗

(𝑥) ∂𝑢−

∂𝑥
𝑗

∂𝑢−

∂𝑥
𝑖

 𝑑𝑥 ≥ α|𝑢−|2
1,Ω

 .

Poincare implies that and therefore this implies that . This is the very simple𝑢− = 0 𝑢 ≥ 0

proof based on these sign arguments here. We get the first thing, this proves (i).

Now for (ii); let then if is constant then also satisfies (*). So recall𝑎
0

= 0,  𝑚 ∈ ℝ 𝑢 − 𝑚 

star, here this term has now disappeared and therefore you have fv which has nothing to do

with the u so if you put u minus m the derivative does not change and therefore u minus m is

also a solution of star. So, now if you put this implies that and𝑚 = inf
Γ
 𝑢,  𝑢 − 𝑚 ≥ 0 𝑜𝑛 Γ

by (i), .𝑢 − 𝑚 ≥ 0 𝑜𝑛 Ω

(iii) if , then you have if and , then you have𝑓 = 0,  𝑎
0

= 0 𝑀 = sup
Γ
 𝑢 𝑚 = inf

Γ
 𝑢 𝑀 − 𝑢 

and also satisfies (*), and and are greater than equal to 0 on and𝑢 − 𝑚 𝑀 − 𝑢 𝑢 − 𝑚 Γ  

therefore this implies that , so this proves this theorem completely.𝑚 ≤ 𝑢 ≤ 𝑀 𝑜𝑛 Ω 
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Remark: The above result is called the “weak maximum principle”.

You just have the sign of the data and sign of the solution on the boundary that determines the

sign in the domain. This is called the weak maximum principle.

Remark: proof depends on the fact that and therefore, no such𝑢 ∈ 𝐻1 ⇒ 𝑢+,− ∈ 𝐻1

principle for fourth order equations since such results are not available in .𝐻2(Ω)

This is purely a property of and that is why second order equations have this nice𝐻1

property.
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Remark: if , results of preceding theorem also true for𝑎
0

≥ 0 𝑖𝑛 Ω

—---------(**)
Ω
∫

𝑖,𝑗=1

𝑁

∑ 𝑎
𝑖𝑗

(𝑥) ∂𝑢
∂𝑥

𝑗

∂𝑣
∂𝑥

𝑖
 𝑑𝑥 +

Ω
∫

𝑖=1

𝑁

∑ 𝑎
𝑖

∂𝑢
∂𝑥

𝑖
𝑣 𝑑𝑥 +

Ω
∫ 𝑎

0
𝑢𝑣 =

Ω
∫ 𝑓𝑣 𝑑𝑥 .

for every .𝑣 ∈ 𝐻1
0
(Ω)

So, this is a slightly difficult thing so we refer to the book by Gilberg and Trudinger. So, if

then of course it is both non negative, non positive and , then we𝑢 = 0 𝑜𝑛 Γ 𝑓 ≡ 0 𝑜𝑛 Ω

have then both u and -u are solutions. And this will be proven by the previous theorem since

the maximum and minimum are both on the u equals 0 should occur on the boundary and the

boundary the value is 0.

So, this implies . So, if you remember we said that the solution of this will be a d𝑢 ≡ 0 𝑜𝑛 Ω

dimensional subspace and the the general equation will have when , so when𝑓 ≠ 0 𝑓 = 0 

the solution is a d-dimensional subspace of and and the solution will exist for𝐻1 (Ω) 𝐻1
0
(Ω)

the general f only if it belongs to the orthogonal complement of another d-dimensional

subspace in 𝐿2 .

But now, this shows that if so solution for is . Therefore, for every𝑎
0

= 0 ,  𝑓 = 0 𝑢 = 0

, (**) has a solution. So, by means of the maximum principle we have if you go𝑢 ∈ 𝐿2(Ω)

back to the Dirichlet problem for this equation we said that f should belong to the orthogonal

complement of a d-dimensional subspace, where d is the dimension of the subspace of

solutions, when .𝑓 = 0

And now that if the maximum principle tells you that the solution is only and𝑓 = 0 𝑢 = 0

that means and therefore all of you have a solution for space. Now, the condition that𝑑 = 0

that depends of course on the regularity theorems, which use the Sobolev𝑢 ∈ 𝐶(Ω) 

embedding theorem.


