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Today we will look at an example of the Galerkin method. The Galerkin method is a method

of approximating solutions of functional equations, so on one hand it is useful in numerical

analysis, because you produce approximate solutions of equations which you want to solve.

On the theoretical side it is also a useful tool, because by producing approximate solutions

and showing that they converge in some suitable topology to the solution of a problem, you

prove that by the existence of solutions of a problem.

So, we will illustrate the latter in an example here.
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So, by Cauchy-Schwarz inequality, is continuous, but look at𝑎(𝑢, 𝑣)
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So, we will use the Galerkin; so we will try to prove the existence of a solution to the system

of equations. You have a system of equations because you are dealing in a product space you

have two unknowns’ u1 and u2 to find and therefore you have two equations for them which

are coupled because u1 and u2 get mixed up in the equations and you want to solve this and

try to prove the existence solution. As I said, the Lax-Milgram lemma is not directly available

and therefore we want to show this.
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So is a separable Hilbert space, so therefore let us assume that𝑉 = (𝐻1
0
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So, the Galerkin method has the following stages:
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is where we will have to use the properties of the bilinear form, linear form, etcetera all these

things.

So, let us go and execute this program.
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Actually you do not even need to show the need to use this Lax-Milgram lemma, so this is by

Lax-Milgram lemma. If you write out this equation you have to write it out for each basis

function I just give you Alike.
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So you want to solve for every . so this is linear in v therefore it is𝑎(𝑢
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So, now you have m linear equations in m unknowns namely these are theα = (α𝑚

1
,..., α𝑚

𝑚
 ) 

unknowns and if you know these if you can find these then you can find um and that solves

the equation.

So, you have a linear equation, you have of the form alpha is this vector and𝐴(α) = 𝐹,  

therefore, and that is known to you. Then A is the matrix𝐹 = [(𝑓, 𝑒
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positive definite. So, a is positive definite and therefore every positive definite matrix is

invertible and therefore there exists a unique alpha vector and therefore you have the solution

um, so this is the way of looking at the first step.
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So, from this you get that mod um 1, 1 omega plus mod um 2, 1 omega is less than equal to C

some constants, different constant but does not matter. This shows that step 2 is satisfied, so

all the solutions are uniformly bounded. Step 3, um bounded in v implies there exists weakly

convergent subsequence, so let us take umk weakly converges to u in v.

Now, v is a hilbert space, so if you look at so any element v in v, v can be written as mod

norm v square is equal to you have that the v equal to sigma j equals 1 to infinity, v ej, ej.

And what does this mean? This means that is if you write vm equals sigma j equals 1 to m v

ej, ej, then vm converges to v in v. So, this is what you have.

You have a of umk vmk equals f vmk, now I want to pass to limit. So, umk converges to u

weekly vmk converges to v in norm and therefore in fact you have, what do you have the a of

umk vmk minus auv this equal to a of umk v plus vmk minus v plus a of umk minus u v. Now

the first term mod au of umk vmk minus v is less than some m times mod norm umk norm

vmk minus v. Now this is bounded because it is a weakly convergent subsequence and this

goes to 0 as we know and this goes to 0.

Similarly, if you have a of umk minus uv, this is a continuous bilineal form so action on v

gives you a continuous linear functional and since you have weak convergence this goes to 0

since umk weekly converges to u and therefore you have a of umk vmk goes to auv. I have

just repeated the fact that if you have a continuous bilinear form in a Hilbert space, then you



have one weak convergence, one norm convergence, then the limit will be the correct one

which we expect.

Therefore, this implies that auv is equal, this one of course converges to fv because vmk

converges to v, therefore auv equals fv for every v and therefore you have a solution to this

problem.
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Remark: solution is unique, if you had two solutions u and w, So, you have



𝑎(𝑢 − 𝑤, 𝑣) = 0,  ∀ 𝑣 ∈  𝑉

and now you put , so then you will get that𝑣 = 𝑢 − 𝑤
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and therefore the solution is unique.

Now, we also have by the Relic-Kondorov theorem, you have that in norm.𝑢
𝑚
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→ 𝑢 (𝐿2(Ω))2

Now given any subsequence of any subsequence of there exists a further𝑢
𝑚

𝑘

𝑢
𝑚

subsequence which converges weakly to u, the solution of the system. Therefore, what𝑢
𝑚

𝑘
𝑙

does it mean? Every every subsequence has a further subsequence and the limit is always the

same and therefore you have that in norm.𝑢
𝑚

→ 𝑢 (𝐿2(Ω))2

So, now let us interpret the differential equation as a boundary value problem. So, 𝑢 ∈ 𝑉

solution, this implies that . This is the boundary condition which is built𝑢
1
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= 0 𝑜𝑛 Γ

into the vector space.
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So, now if you take and you take , so then you will get that𝑣 ∈ 𝐻1(Ω) 𝑣 = (𝑣, 0) 𝑜𝑟 (0, 𝑣)
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So, if we, then you have that from this we can derive easily what is take so you get𝑣 ∈ 𝐷(Ω) 
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So, this is the coupled system of linear pdes which we have solved using this method of

Galerkin and in fact this has applications to the solution of the Schrodinger equation which is

important in quantum mechanics and so on, we will see that later.

So, this is an example of the Galerkin method which is very useful in both. You can use the

approximate suitably. In fact the finite element method if you are familiar is a particular case

of the Galerkin method. Here we have used an orthonormal basis and use the first span of the

first m vectors as the finite dimensional space. The Galerkin method, the finite element

method, has a different way of constructing the finite dimensional spaces.

So, that is the only difference which exploits the powers of modern computers. So, that is the

importance of the Galerkin method.


