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So, we continue with the

Exercises, 4: let

φ(𝑥) = 1
2π 𝑙𝑜𝑔 𝑟            ,  𝑁 = 2



= −1
(𝑁−2)α

𝑁
𝑟2−𝑁     ,  𝑁 ≥ 3.

where equals surface measure of unit ball in . So, recall that this is the  α
𝑁

= ℝ𝑁

fundamental solution of the laplace operator we have delta Fi equal to delta as we have

seen earlier in the chapter on distributions.

So (a), let so there exists a unique solution such that in𝑥 ∈ Ω φ𝑥 ∆φ𝑥 = 0 Ω

and

in .φ𝑥(𝑦) = φ(|𝑦 − 𝑥|) Γ

So, bounded open set and gamma equals d omega as usual. So, now, if ,Ω ⊂ ℝ𝑁 𝑥 ∈ Ω

then for every we have , so is a smooth function, implies𝑦 ∈ Γ 𝑥 ≠ 𝑦 φ(|𝑦 − 𝑥|)  

there exists a unique solution of above problem, unique weak solution. If omega is

smooth, then it will also be a smooth solution.

So (b), so let for every x in , so this is not very difficult to get ifφ𝑥 ∈ 𝐻2(Ω) Ω

you have a weak solution then by regularity theorems you can easily get it for omega

sufficiently smooth. Assume such that𝑢 ∈ 𝐶2(Ω)

− ∆𝑢 = 𝑓  𝑖𝑛  Ω

𝑢 = 𝑔   𝑜𝑛  Γ

Then for every we have the representation formula𝑥 ∈ Ω

𝑢(𝑥) =−
Ω
∫ 𝑓𝐺(𝑥, 𝑦) 𝑑𝑦 +

Γ
∫ 𝑔(𝑦) ∂𝐺(𝑥,𝑦)

∂ν  𝑑σ(𝑦).

Where so this is called the Greens function. So, we𝐺(𝑥, 𝑦) = φ(|𝑥 − 𝑦|) − φ𝑥(𝑦).

can represent the solution of the Laplace operator in terms of the Greens function, so

this is called the Greens function. So, for different domains we try to calculate g then

you can get explicit formulae for the solution of the equation. So, it can be done with

simple geometries like half plane circle, etcetera.

You might have seen it in your pde courses, classical pde courses, such formulae are

familiar. So, now let us try to prove this so the existence of a Greens function is clear, if



the green domain is sufficiently smooth and the data is also smooth then you have a

representation formula in terms of the Greens function.

So, let, so

solution, where such that . So, you haveΩ
ε

= Ω\𝐵(𝑥, ε) ε > 0 𝐵(𝑥, ε) ⊂ Ω Ω

here and you have x and you have a small ball rounded and what you have outside is

omega epsilon. So, now we apply green's identity, you have that

Ω
ε

∫ 𝑢(𝑦)∆φ(|𝑦 − 𝑥|) 𝑑𝑦 −
Ω

ε

∫ φ(𝑦)∆𝑢(|𝑦 − 𝑥|) 𝑑𝑦.

=
∂Ω

ε

∫ {𝑢(𝑦) ∂φ(𝑦)
∂ν − φ(𝑦) ∂𝑢(𝑦)

∂ν } 𝑑σ(𝑦)

Now that means y is not equal to x, because x is the center of this ball which𝑦 ∈ Ω
ε

we have excluded from the and this implies is harmonic. Therefore, thisΩ
ε

φ(|𝑦 − 𝑥|)

integral will go off to 0, so then you have d of is nothing but d of S epsilon whereΩ
ε

Ω
ε

S epsilon is set of all mod y minus x equal to epsilon that means you have the𝑦 ∈ Ω

sphere this is the boundary, so this is s epsilon.
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Since everything is smooth integral on of of mod y minus x du by d nu of y d𝑆
ε

φ

sigma y. Now all these are bounded on , there is no problem and therefore this is less𝑆
ε

than or equal to some C times epsilon power n minus 1, because the surface measure of

s epsilon is epsilon power N minus 1 times alpha N. So, this whole thing is less than C

and that goes to 0 as epsilon goes to 0.𝑆
ε

Now, what about integral of of u y d by d nu mod y minus x d sigma y, if you go𝑆
ε

φ

back to the calculations which we did when computing the fundamental solution

laplacian, then you perform the same calculation so this will converge to minus u of ux

as epsilon tends to 0. That is so C computations of fundamental solution of delta.
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So, if with these two, so if we rewrite the previous thing, so you will get

𝑢(𝑥) =−
Ω
∫ 𝑓𝐺(𝑥, 𝑦) 𝑑𝑦 +

Γ
∫ 𝑔(𝑦) ∂𝐺(𝑥,𝑦)

∂ν  𝑑σ(𝑦).

ux will be equal to integral on omega as epsilon goes to 0 delta u(y) of mod y minusφ

x dx, so this is s epsilon goes to 0 plus integral on gamma u of y d by d nu mod xφ

minus y d sigma y minus integral of gamma of mod x minus y du by d nu d sigma y.φ

So, this is just got by writing integral on omega epsilon omega epsilon is sum of these

two, so you have sum of two integrals the integrals on S epsilon we have evaluated



taken the limits and then the integral on d omega which is gamma which is remaining

and and then you have this extra term here and so if you come use these two properties

here then you will get this following relationship.

So, now apply Green's identity to u and Fi super x because thats in , I can apply𝐻2

that also, so integral on omega u delta again that is 0, because its a harmonicφ(𝑥)

function, minus delta u of y uy dy and equal to integral on gamma u y dφ(𝑥) φ𝑥(𝑦)

by d nu minus du by d nu of y d sigma y. So, if we we are in this so youφ𝑥(𝑦) φ𝑥(𝑦)

will get 0 equal to integral on omega delta u(y) dy plus integral on gamma u y dφ𝑥(𝑦)

by d nu, sorry this will be with the minus sign, so this is let me rewrite thisφ(𝑥)

correctly.

I am bringing everything to the left hand side, so delta u of y into minus , forφ𝑥(𝑦)

some reason I am going to write like that and then plus minus u y d by d nu at y dφ𝑥

sigma y plus integral on gamma du by d nu y d sigma. Now let us add these two,φ𝑥(𝑦)

so adding 1 and 2, this is 1 and this is 2. So, you get u of x equal to integral on omega

you have delta u y into… so you have of mod y minus x minus dy and thenφ φ𝑥(𝑦)

plus integral on gamma.

Here, u y into d by d nu Fi of mod x minus y minus d, , so d by d nu of all thisφ𝑥 φ𝑥(𝑦)

into d sigma y, and then minus integral on gamma, du by d nu at y of x minus yφ

minus d sigma. Now we do not know anything about du by d nu, but this isφ𝑥(𝑦)

precisely the reason because f by x minus y minus is equal to 0, so that is howφ φ𝑥(𝑦)

we defined . This condition and therefore, so this term vanishes because this is equalφ𝑥

to 0 here.
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So, now is precisely , soφ(𝑦 − 𝑥) − φ𝑥(𝑦) 𝐺(𝑥, 𝑦)

𝑢(𝑥) =−
Ω
∫ ∆𝑢𝐺(𝑥, 𝑦) 𝑑𝑦 +

Γ
∫ 𝑢(𝑦) ∂𝐺(𝑥,𝑦)

∂ν  𝑑σ(𝑦).

=−
Ω
∫ 𝑓(𝑦)𝐺(𝑥, 𝑦) 𝑑𝑦 +

Γ
∫ 𝑔(𝑦) ∂𝐺(𝑥,𝑦)

∂ν  𝑑σ(𝑦).

and that is exactly what we wanted to prove.

So, this is the formula for the solution provided the domain is smooth and if you have

when you take into account the Greens function which is good enough. So, before

quitting this session I just wanted to… I should have done this earlier but probably here

some errata which I wanted to correct.

So, system of elasticity, you might have already figured it out, we we had this we had

that and then we took when recovering𝑣 ∈ 𝐷(Ω) 𝑣
−

= (𝑣, 0, 0),   (0, 𝑣, 0)  ,   (0, 0, 𝑣)

the differential equations and then we get that

−
𝑖,𝑗=1

3

∑ ∂
∂𝑥

𝑗
σ

𝑖𝑗
(𝑢) 𝑑σ = 𝑓

𝑖
,   𝑖𝑛  Ω;  𝑖 = 1, 2, 3

you get this.
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And then similarly, another sigma was missing that was

Γ
∫

𝑖,𝑗=1

3

∑ σ
𝑖𝑗

(𝑢)𝑣
𝑖
µ

𝑗
 𝑑σ =

Γ
∫ 𝑔. 𝑣 𝑑σ

for every v. and this again from this we deduce that again using the v,0,0),𝑣 = (

(0,v,0),  (0,0,v)  in , so you get again the sigma was missing this time again.𝐻1(Ω)

This is

𝑖,𝑗=1

3

∑ σ
𝑖𝑗

(𝑢)µ
𝑗
 = 𝑔   𝑜𝑛  Γ;  𝑖 = 1, 2, 3.

There were various sigmas which were missing in that thing, you might have noted it

already if not please make correction.


