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We will now do some

Exercises. 1: let be a bounded open set, , let . Define forΩ ⊂ ℝ𝑁 Γ = ∂Ω α > 0

𝑢, 𝑣 ∈ 𝐻1(Ω)

𝑎(𝑢, 𝑣) =
Ω
∫ ∇𝑢 · ∇𝑣 𝑑𝑥 +

Ω
∫ 𝑢 𝑣 𝑑𝑥 + α

Γ
∫ 𝑢𝑣 𝑑σ

Let . Show that there exists a unique𝑓 ∈ 𝐿2(Ω) 𝑢 ∈ 𝐻1(Ω)

such that

, .𝑎(𝑣, 𝑣) =
Ω
∫ 𝑓𝑣 𝑔𝑥 𝑣 ∈ 𝐻1(Ω)

If u is smooth interpret it as a boundary value problem.

Solution: So,



|𝑎(𝑢, 𝑣)| ≤ |𝑢|
1,Ω

|𝑣|
1,Ω

+ |𝑢|
0,Ω

|𝑣|
0,𝑣

+ α|𝑢|
0,Γ

|𝑣|
0,Γ

.≤ 𝐶||𝑢||
1,Ω

||𝑣||
1,Ω

By the Trace theorem, so it is continuous and then

.|𝑎(𝑣, 𝑣)| = |𝑣|2
1,Ω

+ |𝑣|2
0,𝑣

+ α|𝑣|2
0,Γ

≥ ||𝑣||2
1,Ω

So, this is greater than equal to 0 because alpha and therefore this becomes equal to norm v

square 1 omega. And therefore, this is omega elliptic, so there exist unique u solution by𝐻1

Lax Milgram.
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Now we want to interpret it as a boundary value problem, so if we have then of𝑣 ∈ 𝐷(Ω)

course if you look at it immediately this will give you

− ∆𝑢 + 𝑢 = 𝑓

. We let of so assume if and then you get that𝑓 ∈ 𝐷'(Ω) 𝑣 ∈ 𝐻1(Ω) 𝑢 ∈ 𝐻2(Ω) 𝑣 ∈ 𝐻1(Ω)

Ω
∫− ∆𝑢. 𝑣 𝑑𝑥 +

Γ
∫ ∂𝑢

∂ν 𝑣 𝑑σ +
Ω
∫ 𝑢𝑣 𝑑𝑥 + α

Γ
∫ 𝑢𝑣 𝑑σ =

Ω
∫ 𝑓𝑣 𝑑𝑥

Ω
∫(− ∆𝑢 + 𝑢 − 𝑓)𝑣 𝑑𝑥 = 0
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So everything is now in and we have d omega dense in and therefore, you have𝐿2 𝐿2

in . This will now imply that integral on gamma du by dnu plus alpha− ∆𝑢 + 𝑢 = 𝑓 𝐿2(Ω)

u times v equal d sigma equal to 0, for every . This we know we have seen during𝑣 ∈ 𝐻1(Ω)

the Neumann problem case this implies that du by d nu plus alpha u equal to 0 on gamma. So,

we have the minus laplacian u plus u equal to f in omega and du by d nu plus alpha u equal to

0 on gamma. So, this is the Robin boundary condition.

2( a): Let bounded connected open set and , for allΩ ⊂ ℝ𝑁 Γ = ∂Ω 𝑢, 𝑣 ∈ 𝐻1(Ω)

define

𝑎(𝑢, 𝑣) =
Ω
∫ ∇𝑢. ∇𝑣 +

Ω
∫ 𝑢 𝑑𝑥( ) Ω

∫ 𝑣 𝑑𝑥( )
This is well defined because u is in is bounded so so the functions are𝐿2(Ω) 𝑢 ∈ 𝐿1(Ω)

integrable. So, show that a is elliptic.𝐻1(Ω)
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Solution,

𝑎(𝑣, 𝑣) =
Ω
∫ |∇𝑣|2 +

Ω
∫ 𝑣 𝑑𝑥( )2

.

We want to show that this is greater than equal to alpha times norm v square 1 omega. If not

however small alpha you take you can always contradict this therefore by after normalization

there exists , norm 1 omega equal to 1 and is less than 1 by n times𝑣
𝑛

∈ 𝐻1(Ω) 𝑣
𝑛

𝑎(𝑣
𝑛
, 𝑣

𝑛
)

norm vn with 1 omega and implies that goes to 0 as n tends to infinity.𝑎(𝑣
𝑛
, 𝑣

𝑛
)



So, , so so there exists a sub sequence hence fourth I𝑣
𝑛

∈ 𝐻1(Ω) 𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑣
𝑛

∈ 𝐻1(Ω)

will only deal with that subsequence, I wont write . So, vn converges to b weakly .𝑣
𝑛

𝑘

𝐻1(Ω)

Then by Rellick because omega is bounded contras of . Integral minus integral𝑣
𝑛

∈ 𝐿2(Ω) 𝑣
𝑛

v is less than equal to integral omega mod vn minus v and that is less than equal to integral on

omega mod vn minus v square dx power half mod omega power half by Koshy-Schwartz and

of course that goes to 0.

Therefore, we have integral vn itself goes to 0, so integral v equals limit integral v dx equal to

0. Integral grad vn square dx also goes to 0 because a v, n vn goes to 0 that means integral

grad vn square goes to 0 and integral v n goes to 0 both these strings go to 0. Integral mod

grad v square on omega is less than equal to limins integral mod grad square dx that is𝑣
𝑛

because of the weak lower semi continuity of the in the integral and that is equal to 0.𝐿2

Integral grad v square equal to 0 and that implies that v equal to constant omega is connected

and since integral v equal to 0, v equals constant, so this implies that v itself is equal to 0.
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So, , but we also know that integral grad𝑣
𝑛

→ 𝑣
0
 𝑤𝑒𝑎𝑘𝑙𝑦 𝑣

𝑛
→ 0,   𝐻1(Ω) 𝑎𝑛𝑑 𝐿2(Ω) 𝑣

𝑛

square goes to 0 and therefore, this implies that norm square 1 omega also goes to 0 but𝑣
𝑛

that is a contradiction because norm 1 omega equal to 1.This is therefore it is elliptic,𝑣
𝑛

hence elliptic.
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(b) let then there exists a unique such that𝑓 ∈ 𝐿2(Ω) 𝑢 ∈ 𝐻1(Ω)

. Solution, a is elliptic obviously continuous implies there exists unique𝑎(𝑢, 𝑣) =
Ω
∫ 𝑓𝑢𝑣 𝑑𝑥

solution by Lax-Milgram. C, let , what is the bvp solved by you?𝑓 ∈ 𝐿2(Ω),   
Ω
∫ 𝑓 𝑑𝑥 = 0

Solution, so if you take v equal to 1, then then,𝑣 ∈ 𝐻1(Ω)

and that is equal to integral u times mod omega of𝑎(𝑢, 𝑣) =
Ω
∫ ∇𝑢. ∇𝑣 +

Ω
∫ 𝑢

Ω
∫ 𝑣

course, integral u times mod omega. and therefore, this implies that
Ω
∫ 𝑓𝑣 𝑑𝑥 =

Ω
∫ 𝑓 = 0

and this implies therefore that
Ω
∫ 𝑢 = 0  𝑎(𝑢, 𝑣) =

Ω
∫ ∇𝑢. ∇𝑣.

Therefore, for every integral grad u grad v equals integral fv omega and this𝑣 ∈ 𝐻1(Ω)

implies that minus laplacian u equals f in omega and du by d nu equal to 0 on gamma, this we

know we have seen already. This is another way of looking at the problem Neumann problem

without the plus u term.
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Third problem is called the

(3): Obstacle problem. bounded connected open set ,Ω ⊂ ℝ2 Γ = ∂Ω. χ ∈ 𝐻2(Ω)

on ,χ ≤ 0 Ω

𝐾 = 𝑣 ∈ 𝐻1
0
(Ω)|  𝑣 ≥ χ 𝑜𝑛 𝑎. 𝑒  𝑖𝑛 Ω{ }

. Show that there exists a unique such that𝑓 ∈ 𝐿2(Ω) 𝑢 ∈ 𝐾

𝐽(𝑢) = 𝑀𝑖𝑛
𝑣∈𝐾

𝐽(𝑣)

where 𝐽(𝑣) = 1
2

Ω
∫ |∇𝑣|2𝑑𝑥 −

Ω
∫ 𝑓𝑣 𝑑𝑥

Solution,

𝑎(𝑢, 𝑣) =
Ω
∫ ∇𝑢. ∇𝑣  𝑑𝑥

is continuous elliptic, symmetric. So, let , that implies𝐻1
0
(Ω) 𝑣

𝑛
∈ 𝐾,   𝑣

𝑛
→ 𝑣 𝑖𝑛 𝐻1

0
(Ω) 𝑣

𝑛

converges to and therefore for the subsequence converges to v pointwise𝑣 ∈ 𝐻2 (Ω) 𝑣
𝑛𝑘

almost everywhere. So,



almost everywhere and this implies that . Therefore, is closed,𝑣
𝑛

𝑘

≥ χ ⇒ 𝑣 ≥ χ 𝑣 ∈ 𝐾 𝐾

clearly is convex and therefore, there exists unique u minimizing . 𝐾 𝐽

B, if u smooth show that ,𝑢 ≥ χ 𝑖𝑛  Ω

− ∆𝑢 = 𝑓

in set of all x and omega , and . So solution,𝑢 ≥ χ 𝑖𝑛  Ω 𝑢
𝑛

> χ 𝑖𝑛  Ω 𝑢 = 0  𝑜𝑛  Γ

implies , assume, then omega is in . So, is𝑢 ∈ 𝐻1(Ω) 𝑢 = 0 𝑜𝑛 Γ 𝑢 ∈ 𝐻1 (Ω) ℝ2 𝐻2 (Ω)

contained in c of omega bar by the Sobolev theorem.

And therefore, you have that , so this implies almost everywhere in𝑢 ∈ 𝐾 𝑢 ≥ χ 𝑖𝑛  Ω

omega but then u kai continuous implies . Then𝑢 = χ 𝑖𝑛  Ω

Ω∼ = 𝑥:   𝑢(𝑥) > χ(𝑥){ }

is therefore an open set contained in omega. You have

𝑎(𝑢, 𝑣 − 𝑢) ≥
Ω
∫ 𝑓(𝑣 − 𝑢)  𝑑𝑥

by the characterization of the minimizer and therefore, you have that

Ω
∫ ∇𝑢. ∇(𝑣 − 𝑢) ≥

Ω
∫ 𝑓(𝑣 − 𝑢) 𝑑𝑥
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Let take , extend by 0 then as well. Now in and thenφ ∈ 𝐷(Ω∼) φ ∈ 𝐷(Ω∼) 𝑢 ≥ χ Ω∼

, . So that means its support is inside a compact set and this implies,φ ∈ 𝐷(Ω∼) φ ∈ 𝐷(Ω∼)

by the way I did not… I have sorry, fine. So, this implies there exists an such thatε > 0 

, because on the support which is a compact set you can certainly find an𝑢 + ϵφ ≥ χ  𝑖𝑛 Ω∼

epsilon because attains, a minimum there a positive minimum and it is positive𝑢 − χ

everywhere in that support and it attains a positive minimum.

Then outside , so we know that and therefore this is being andφ = 0 𝑢 ≥ χ Ω∼

ε𝑣φ + 𝑢 ≥ χ  𝑖𝑛 Ω

as well because and . If you substitute that in the variational characterizationφ = 0 𝑢 ≥ χ

then you get

ε
Ω
∫ ∇𝑢. ∇φ 𝑑𝑥 ≥

Ω
∫ ε𝑓φ

, so epsilon gets cancelled. And, now also true for and therefore this implies that− φ

.
Ω
∫ ∇𝑢. ∇φ 𝑑𝑥 =

Ω
∫ 𝑓φ,    φ ∈ 𝐷(Ω∼)
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Implies in . This way it is called the Obstacle problem, you have− ∆𝑢 = 𝑓 Ω∼

omega here kai is some function which is less than equal to 0 on the boundary and then you

are looking for u which is above kai and then its its acted upon but think of a membrane

which is stretched over a solid obstacle here and then is acted upon by a vertical force which

is f and if you have the displacement.

So, there is a portion where it will come in contact with the obstacle and therefore there it

will be equal to k elsewhere, it will satisfy the usual Laplace equation and this is called the

obstacle problem. And then the the is unknown, so omega tilda itself is unknown. It is𝑢 = χ

part of the unknown in the problem, so this is called a free boundary problem. It is an

example of the application of the variational inequality.


