Sobolev Spaces and Partial Differential Equations Professor. S. Kesavan Department of Mathematics Institute of Mathematical Sciences Lecture 59

Excercises Part 8

(Refer Slide Time: 00:17)

We will now do some

Exercises. 1: let $\Omega \subset \mathbb{R}^N$ be a bounded open set, $\Gamma = \partial \Omega$, let $\alpha > 0$. Define for $u, v \in H^1(\Omega)$

$$a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Omega} u \, v \, dx + \alpha \int_{\Gamma} u v \, d\sigma$$

Let $f \in L^2(\Omega)$. Show that there exists a unique $u \in H^1(\Omega)$

such that

$$a(v,v) = \int_{\Omega} fv \, gx, \ v \in H^{1}(\Omega).$$

If u is smooth interpret it as a boundary value problem.

Solution: So,

$$\begin{split} |a(u,v)| & \leq |u|_{1,\Omega} |v|_{1,\Omega} + |u|_{0,\Omega} |v|_{0,v} + |\alpha|u|_{0,\Gamma} |v|_{0,\Gamma} \\ & \leq C ||u||_{1,\Omega} ||v||_{1,\Omega}. \end{split}$$

By the **Trace theorem**, so it is continuous and then

$$|a(v,v)| = |v|_{1,\Omega}^2 + |v|_{0,v}^2 + \alpha |v|_{0,\Gamma}^2 \ge ||v||_{1,\Omega}^2.$$

So, this is greater than equal to 0 because alpha and therefore this becomes equal to norm v square 1 omega. And therefore, this is H^1 omega elliptic, so there exist unique u solution by **Lax Milgram.**

(Refer Slide Time: 03:11)

Now we want to interpret it as a boundary value problem, so if we have $v \in D(\Omega)$ then of course if you look at it immediately this will give you

$$-\Delta u + u = f$$

 $f \in D'(\Omega)$. We let $v \in H^1(\Omega)$ of so assume $u \in H^2(\Omega)$ if and $v \in H^1(\Omega)$ then you get that

$$\int_{\Omega} - \Delta u \cdot v \, dx + \int_{\Gamma} \frac{\partial u}{\partial v} v \, d\sigma + \int_{\Omega} uv \, dx + \alpha \int_{\Gamma} uv \, d\sigma = \int_{\Omega} fv \, dx$$

$$\int_{\Omega} (-\Delta u + u - f) v \, dx = 0$$

(Refer Slide Time: 04:31)

So everything is now in L^2 and we have d omega dense in L^2 and therefore, you have $-\Delta u + u = f$ in $L^2(\Omega)$. This will now imply that integral on gamma du by dnu plus alpha u times v equal d sigma equal to 0, for every $v \in H^1(\Omega)$. This we know we have seen during the Neumann problem case this implies that du by d nu plus alpha u equal to 0 on gamma. So, we have the minus laplacian u plus u equal to f in omega and du by d nu plus alpha u equal to 0 on gamma. So, this is the Robin boundary condition.

2(a): Let $\Omega \subset \mathbb{R}^N$ bounded connected open set and $\Gamma = \partial \Omega$, for all $u, v \in H^1(\Omega)$ define

$$a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v + \left(\int_{\Omega} u \, dx \right) \left(\int_{\Omega} v \, dx \right)$$

This is well defined because u is in $L^2(\Omega)$ is bounded so $u \in L^1(\Omega)$ so the functions are integrable. So, show that a is $H^1(\Omega)$ elliptic.

(Refer Slide Time: 06:42)

Solution,

$$a(v,v) = \int_{\Omega} |\nabla v|^2 + \left(\int_{\Omega} v \, dx\right)^2.$$

We want to show that this is greater than equal to alpha times norm v square 1 omega. If not however small alpha you take you can always contradict this therefore by after normalization there exists $v_n \in H^1(\Omega)$, norm v_n 1 omega equal to 1 and $a(v_n, v_n)$ is less than 1 by n times norm vn with 1 omega and implies that $a(v_n, v_n)$ goes to 0 as n tends to infinity.

So, $v_n \in H^1(\Omega)$ is bounded, so $v_n \in H^1(\Omega)$ so there exists a sub sequence hence fourth I will only deal with that subsequence, I wont write v_{n_k} . So, vn converges to b weakly $H^1(\Omega)$.

Then by Rellick because omega is bounded contras of $v_n \in L^2(\Omega)$. Integral v_n minus integral v_n wis less than equal to integral omega mod v_n minus v_n and that is less than equal to integral on omega mod v_n minus v_n square dx power half mod omega power half by Koshy-Schwartz and of course that goes to v_n .

Therefore, we have integral vn itself goes to 0, so integral v equals limit integral v dx equal to 0. Integral grad vn square dx also goes to 0 because a v, n vn goes to 0 that means integral grad vn square goes to 0 and integral v n goes to 0 both these strings go to 0. Integral mod grad v square on omega is less than equal to limins integral mod grad v_n square dx that is because of the weak lower semi continuity of the L^2 in the integral and that is equal to 0.

Integral grad v square equal to 0 and that implies that v equal to constant omega is connected and since integral v equal to 0, v equals constant, so this implies that v itself is equal to 0.

(Refer Slide Time: 10:22)

So, $v_n \to v_0$ weakly $v_n \to 0$, $H^1(\Omega)$ and $L^2(\Omega)$, but we also know that integral grad v_n square goes to 0 and therefore, this implies that norm v_n square 1 omega also goes to 0 but that is a contradiction because norm v_n 1 omega equal to 1. This is therefore it is elliptic, hence elliptic.

(Refer Slide Time: 11:12)

(b) let $f \in L^2(\Omega)$ then there exists a unique $u \in H^1(\Omega)$ such that

 $a(u, v) = \int_{\Omega} fuv \, dx$. Solution, a is elliptic obviously continuous implies there exists unique

solution by Lax-Milgram. C, let $f \in L^2(\Omega)$, $\int_{\Omega} f \, dx = 0$, what is the bvp solved by you?

Solution, so if you take v equal to 1, then $v \in H^1(\Omega)$ then,

 $a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v + \int_{\Omega} u \int_{\Omega} v$ and that is equal to integral u times mod omega of

course, integral u times mod omega. $\int_{\Omega} fv \, dx = \int_{\Omega} f = 0$ and therefore, this implies that

 $\int_{\Omega} u = 0 \text{ and this implies therefore that } a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v.$

Therefore, for every $v \in H^1(\Omega)$ integral grad u grad v equals integral fv omega and this implies that minus laplacian u equals f in omega and du by d nu equal to 0 on gamma, this we know we have seen already. This is another way of looking at the problem Neumann problem without the plus u term.

(Refer Slide Time: 13:42)

Third problem is called the

(3): Obstacle problem. $\Omega \subset \mathbb{R}^2$ bounded connected open set $\Gamma = \partial \Omega$. $\chi \in H^2(\Omega)$, $\chi \leq 0$ on Ω ,

$$K = \left\{ v \in H^1_{0}(\Omega) | v \ge \chi \text{ on a. e in } \Omega \right\}$$

 $f \in L^2(\Omega)$. Show that there exists a unique $u \in K$ such that

$$J(u) = Min_{v \in K} J(v)$$

where
$$J(v) = \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx - \int_{\Omega} f v \, dx$$

Solution,

$$a(u, v) = \int_{\Omega} \nabla u. \nabla v \ dx$$

is continuous $H^1_{0}(\Omega)$ elliptic, symmetric. So, let $v_n \in K$, $v_n \to v$ in $H^1_{0}(\Omega)$, that implies v_n converges to $v \in H^2(\Omega)$ and therefore for the subsequence v_{n_k} converges to v pointwise almost everywhere. So,

 $v_{n_k} \ge \chi \Rightarrow v \ge \chi$ almost everywhere and this implies that $v \in K$. Therefore, K is closed, clearly K is convex and therefore, there exists unique u minimizing J.

B, if u smooth show that $u \ge \chi in \Omega$,

$$-\Delta u = f$$

in set of all x and omega $u \ge \chi$ in Ω , $u_n > \chi$ in Ω and u = 0 on Γ . So solution, $u \in H^1(\Omega)$ implies u = 0 on Γ , $u \in H^1(\Omega)$ assume, then omega is in \mathbb{R}^2 . So, $H^2(\Omega)$ is contained in c of omega bar by the Sobolev theorem.

And therefore, you have that $u \in K$, so this implies $u \ge \chi$ in Ω almost everywhere in omega but then u kai continuous implies $u = \chi$ in Ω . Then

$$\Omega^{\sim} = \{x: \ u(x) > \chi(x)\}$$

is therefore an open set contained in omega. You have

$$a(u, v - u) \ge \int_{\Omega} f(v - u) dx$$

by the characterization of the minimizer and therefore, you have that

$$\int_{\Omega} \nabla u. \, \nabla (v - u) \ge \int_{\Omega} f(v - u) \, dx$$

(Refer Slide Time: 18:49)

Let take $\varphi \in D(\Omega^{\sim})$, extend by 0 then $\varphi \in D(\Omega^{\sim})$ as well. Now $u \geq \chi$ in Ω^{\sim} and then $\varphi \in D(\Omega^{\sim})$, $\varphi \in D(\Omega^{\sim})$. So that means its support is inside a compact set and this implies, by the way I did not... I have sorry, fine. So, this implies there exists an $\varepsilon > 0$ such that

 $u + \epsilon \phi \ge \chi$ in Ω , because on the support which is a compact set you can certainly find an epsilon because $u - \chi$ attains, a minimum there a positive minimum and it is positive everywhere in that support and it attains a positive minimum.

Then outside $\varphi = 0$, so $u \ge \chi$ we know that and therefore this is being Ω^{\sim} and $\varepsilon v \varphi + u \ge \chi \ in \ \Omega$

as well because $\varphi = 0$ and $u \ge \chi$. If you substitute that in the variational characterization then you get

$$\varepsilon \int_{\Omega} \nabla u. \, \nabla \varphi \, dx \ge \int_{\Omega} \varepsilon f \varphi$$

, so epsilon gets cancelled. And, now also true for $-\ \phi$ and therefore this implies that

$$\int\limits_{\Omega} \nabla u. \, \nabla \varphi \, dx = \int\limits_{\Omega} f \varphi, \quad \varphi \in D(\Omega^{\widetilde{}}).$$

(Refer Slide Time: 21:22)

Implies $-\Delta u = f$ in Ω . This way it is called the **Obstacle problem**, you have omega here kai is some function which is less than equal to 0 on the boundary and then you are looking for u which is above kai and then its its acted upon but think of a membrane which is stretched over a solid obstacle here and then is acted upon by a vertical force which is f and if you have the displacement.

So, there is a portion where it will come in contact with the obstacle and therefore there it will be equal to k elsewhere, it will satisfy the usual Laplace equation and this is called the obstacle problem. And then the $u=\chi$ is unknown, so omega tilda itself is unknown. It is part of the unknown in the problem, so this is called a free boundary problem. It is an example of the application of the variational inequality.