Sobolev Spaces and Partial Differential Equations
Professor. S. Kesavan
Department of Mathematics
Institute of Mathematical Sciences
Lecture 59

Excercises Part 8
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We will now do some
Exercises. 1: let 0 C R" be a bounded open set, I = 9(Q, let a > 0. Define for

u,v e HI(Q)

a(u,v) = [Vu - Vvdx + [uvdx + af uvdo
Q Q r

Let f € Lz(ﬂ). Show that there exists a unique u € H 1(Q)

such that
a(v,v) = [ fvgx, v € Hl(Q).
Q

If u is smooth interpret it as a boundary value problem.

Solution: So,



<
la(u, V)| < Jul vl o+ lulg vl + alulg [v]

0, or
<
By the Trace theorem, so it is continuous and then
2 2 2 2
= >
la@v)| = vl + Iy, + avl’ = vl

So, this is greater than equal to 0 because alpha and therefore this becomes equal to norm v

square 1 omega. And therefore, this is H omega elliptic, so there exist unique u solution by

Lax Milgram.
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Now we want to interpret it as a boundary value problem, so if we have v € D() then of

course if you look at it immediately this will give you

—Aut+u=f
f € D'(Q). Weletv € Hl(Q) of so assume u € HZ(Q) ifand v € Hl(Q) then you get that

[— Auvdx +fg—1‘fvdc + fuvdx + af uvdo = [ frdx
Q r Q r Q

(= Mu+u— Hvdx =0
0
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So everything is now in L? and we have d omega dense in L? and therefore, you have
—Au+u=fin LZ(Q). This will now imply that integral on gamma du by dnu plus alpha

u times v equal d sigma equal to 0, for every v € H 1(Q). This we know we have seen during
the Neumann problem case this implies that du by d nu plus alpha u equal to 0 on gamma. So,
we have the minus laplacian u plus u equal to f in omega and du by d nu plus alpha u equal to

0 on gamma. So, this is the Robin boundary condition.

2( a): Let Q) C R" bounded connected open set and I' = 0Q, for ally, v € Hl(Q)

define

a(u,v) = [ Vu.Vv +
)

fudx||[vdx
Q Q
This is well defined because u is in LZ(Q) is bounded so u € Ll(Q) so the functions are

integrable. So, show that a is H 1(9) elliptic.
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Solution,

a(w,v) = [ V| + | [ vdx
Q Q

We want to show that this is greater than equal to alpha times norm v square 1 omega. If not

however small alpha you take you can always contradict this therefore by after normalization
there exists v € H 1(Q), norm v 1 omega equal to 1 and a(vn, vn) is less than 1 by n times

norm vn with 1 omega and implies that a(vn, vn) goes to 0 as n tends to infinity.



So, v € H 1(0) is bounded , so v € H 1(9) so there exists a sub sequence hence fourth I

will only deal with that subsequence, | wont write v . So, vn converges to b weakly H 1(Q).
k

Then by Rellick because omega is bounded contras of v € LZ(Q). Integral v minus integral

v is less than equal to integral omega mod vn minus v and that is less than equal to integral on
omega mod vn minus v square dx power half mod omega power half by Koshy-Schwartz and

of course that goes to 0.

Therefore, we have integral vn itself goes to 0, so integral v equals limit integral v dx equal to
0. Integral grad vn square dx also goes to 0 because a v, n vn goes to 0 that means integral
grad vn square goes to 0 and integral v n goes to 0 both these strings go to 0. Integral mod

grad v square on omega is less than equal to limins integral mod grad v square dx that is

. o 2. . .
because of the weak lower semi continuity of the L in the integral and that is equal to 0.

Integral grad v square equal to 0 and that implies that v equal to constant omega is connected

and since integral v equal to 0, v equals constant, so this implies that v itself is equal to 0.
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So, v o, weakly v 0, H 1(Q) and LZ(Q), but we also know that integral grad v
square goes to 0 and therefore, this implies that norm v square 1 omega also goes to 0 but
that is a contradiction because norm v 1 omega equal to 1.This is therefore it is elliptic,

hence elliptic.
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(b)letf € LZ(Q) then there exists a unique u € H 1(Q) such that

a(u,v) = [ fuv dx. Solution, a is elliptic obviously continuous implies there exists unique
Q
solution by Lax-Milgram. C, let f € LZ(Q), [ f dx = 0, what is the bvp solved by you?
Q

Solution, so if you take v equal to 1, then v € H 1(Q) then,

a(u,v) = [Vu.Vv + [uf v and that is equal to integral u times mod omega of
Q Qa0

course, integral u times mod omega. | fvdx = [ f = 0 and therefore, this implies that
Q Q

f u = 0 and this implies therefore that a(u, v) = [ Vu. Vv.
Q Q

Therefore, for every v € H 1(Q) integral grad u grad v equals integral fv omega and this
implies that minus laplacian u equals f in omega and du by d nu equal to 0 on gamma, this we
know we have seen already. This is another way of looking at the problem Neumann problem

without the plus u term.
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Third problem is called the
(3): Obstacle problem. () C R’ bounded connected open set ' = 0Q. x € HZ(Q),

x < Oon),

K = [v € HIO(Q)| v = yxona.e inﬂ}
f € LZ(Q). Show that there exists a unique u € K such that
Jw) = Min__ J(v)
where J(v) = %f |Vv|2dx — [ fvdx
Q Q
Solution,

a(u,v) = [ Vu. Vv dx
Q
is continuous H 10(9) elliptic, symmetric. So, let v € K, v oov inH 10(9), that implies v

2 .
converges to v € H (L) and therefore for the subsequence v converges to v pointwise
k

almost everywhere. So,



vnk > X = v = x almost everywhere and this implies that v € K. Therefore, K is closed,
clearly K is convex and therefore, there exists unique u minimizing J.
B, if u smooth show that u > yin (),
—Au=f

in set of all x and omega u = yxin Q, u > xin  and u = 0 on I'. So solution,
u € Hl(Q) implies u = OonTl, u € H' () assume, then omega is in R’. So, H Q) is

contained in ¢ of omega bar by the Sobolev theorem.

And therefore, you have that u € K, so this implies u = x in Q almost everywhere in

omega but then u kai continuous implies u = x in (. Then

Q" = {x: u® > x(*)}

is therefore an open set contained in omega. You have
awv —u) = [ f(v — w) dx
Q
by the characterization of the minimizer and therefore, you have that

fvuviw —uw) = [ flv — u)dx
Q Q
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Let take @ € D(Q ), extend by 0 then ¢ € D(Q ) as well. Now u > x in Q  and then

@ € D(Q), @ € D(Q). So that means its support is inside a compact set and this implies,
by the way I did not... I have sorry, fine. So, this implies there exists an € > 0 such that

u + ep = x inQ , because on the support which is a compact set you can certainly find an
epsilon because u — x attains, a minimum there a positive minimum and it is positive

everywhere in that support and it attains a positive minimum.

Then outside @ = 0, sou > x we know that and therefore this is being Q" and
evp + u = x in(l

as well because ¢ = 0 and u > . If you substitute that in the variational characterization

then you get

efVu.Vodx = [efo
Q Q

, so epsilon gets cancelled. And, now also true for — ¢ and therefore this implies that

[Vvu.vedx = [ fo, ¢ € D(Q).
Q Q
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Implies — Au = f in Q . This way it is called the Obstacle problem, you have
omega here kai is some function which is less than equal to 0 on the boundary and then you
are looking for u which is above kai and then its its acted upon but think of a membrane
which is stretched over a solid obstacle here and then is acted upon by a vertical force which

is f and if you have the displacement.

So, there is a portion where it will come in contact with the obstacle and therefore there it
will be equal to k elsewhere, it will satisfy the usual Laplace equation and this is called the
obstacle problem. And then the the u = y is unknown, so omega tilda itself is unknown. It is
part of the unknown in the problem, so this is called a free boundary problem. It is an

example of the application of the variational inequality.



