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Biharmonic operator:



Up to now we were looking at examples of second order boundary value problems. So, today we

look at a fourth order problem. So, the Biharmonic operator, so the Biharmonic operator is ∆2

square and therefore it is a fourth order operator, because delta, you apply of , is a∆ ∆ ∆

second order operator, you apply it once again. And therefore, you have a fourth order operator.

So, we are going to look for Dirichlet problem. So, you have

∆2𝑢 = 𝑓    𝑖𝑛   Ω

.𝑢 = ∂𝑢
∂ν = 0   𝑜𝑛 Γ

So, here comes in the Dirichlet problem itself, because for the fourth order operator you∂𝑢
∂ν

need two boundary conditions. So, you might have had this experience in the differential

equations also, when you are dealing with boundary were two point boundary value problems.

So, for second order operator, you needed one boundary condition, for the fourth order operator,

you will need two boundary conditions to fix the solution uniquely. So, this is called the Dirichlet

problem for the Biharmonic operator.

So, if ,then you haveφ ∈ 𝐷(Ω)

Ω
∫ ∆𝑢∆φ  𝑑𝑥 =

Ω
∫ 𝑓φ 𝑑𝑥 

So, now you can transfer the derivatives slowly and so by repeated application of green's

theorem, because of the fact that u and are and f phi is in d omega. So, there is no problem,∂𝑢
∂ν

there are no boundary derivatives, or f phi, or a anything. So, you get Laplacian u times

Laplacian phi dx.

So, this is the thing and now if you look at . So, this implies what? That𝑢 ∈ 𝐻2
0
(Ω)

. And therefore, the boundary conditions are automatically satisfied. And you𝑢 = ∂𝑢
∂ν = 0   𝑜𝑛 Γ

also know that dense in . Now, the both sides of this equation here, are continuous𝐷(Ω) 𝐻2
0
(Ω)



with respect to the , norm and therefore we have the weak formulation, find𝐻2
0
(Ω) 𝐻2 (Ω)

, such that𝑢 ∈ 𝐻2
0
(Ω)

Ω
∫ ∆𝑢∆𝑣  𝑑𝑥 =

Ω
∫ 𝑓𝑣 𝑑𝑥  ,    ∀𝑣∈ 𝐻2

0
(Ω)

So, we have here the space is , which automatically ensures that the boundary conditions𝐻2
0
(Ω)

are satisfied. And then the linear form is integral omega fv dx, which is continuous with respect

to the norm. And therefore, in the norm and so on and so forth. And now and the bilinear𝐿2 𝐻2

form is integral delta u, delta v. So, this is of course obviously continuous. So,

𝑎(𝑢, 𝑣) =
Ω
∫ ∆𝑢∆φ  𝑑𝑥

And therefore, you have that

|𝑎(𝑢, 𝑣)| = |∆𝑢|
0,Ω

|∆φ|
0,Ω

≤ 𝐶||𝑢||
2,Ω

||𝑣||
2,Ω

.   

So, this now you have that

𝑎(𝑣, 𝑣) =
Ω
∫ |∆𝑣|2  𝑑𝑥

So, now we have seen, I have given this probably as an assignment. So, if you have

and you look at .𝑢,  𝑣∈ 𝐻2
0
(Ω)

Ω
∫ ∆𝑢∆𝑣  𝑑𝑥

So, then you can so this is what? This is now slowly you can, you can transfer any derivative

anywhere to either side, because everything is in , there will be no boundary terms, and this𝐷(Ω)

will, then turn out to be

Ω
∫ ∆𝑢∆𝑣  𝑑𝑥 =

Ω
∫

𝑖,𝑗=1

𝑁

∑ ∂2𝑢
∂𝑥

𝑖
∂𝑥

𝑗

∂𝑣
∂𝑥

𝑖
∂𝑥

𝑗
  𝑑𝑥.



So, just transfer the derivatives one by one to from here to here, and then you can prove this. So,

this is just a very you try it for instance with N=2. And then you can generalize it for linear.
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And therefore you have that this is equal to mod u square to, so delta a u, u is therefore equal to

mod u square 2 omega and you know we have omega is a bounded open set. So, omega in ,ℝ𝑁

bounded open set and gamma equals . And therefore you have Poincare inequality which𝐷(Ω)



tells you that this is less than or equal to mod u square is greater than equal to c times mod norm

u square, 2 , in fact mod u square 2 itself is a norm. And therefore, you have the ellipticity.Ω Ω

Therefore, by Lax-Milgram, there exists a unique weak solution for and a is𝑓 ∈ 𝐿2(Ω)

symmetric implies u is minimizer for , where𝐽

𝐽(𝑣) = 1
2

Ω
∫ |∆𝑢|2 𝑑𝑥 −

Ω
∫ 𝑓𝑣  𝑑𝑥,    𝑣 ∈ 𝐻2

0
(Ω).

So, over And further you also have continuity, because you have that𝐻2
0
(Ω)

.α||𝑢||2
0,Ω

≤
Ω
∫ |∆𝑢|2 𝑑𝑥 =

Ω
∫ 𝑓𝑢 𝑑𝑥 ≤ |𝑓|

0,Ω
|𝑢|

0,Ω
≤ |𝑓|

0,Ω
||𝑢||

2,Ω

So, by the standard you have

||𝑢||
2,Ω

≤ 1/α|𝑓|
0,Ω

.

So, you have continuous dependence on the data. So, this is the thing.
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And as usual you can now convince yourself, that if you have a weak solution implies delta

square u equals f in d prime of omega, and of course by construction, namely you have the u



belongs to . And therefore, you have u equals du by d nu equal to 0. So, then if you look𝐻2
0
(Ω)

at regularity theorems, then we can say that whether it is a classical solution, or not and of course

a classical solution is the thing. So, now if you have the Laplace equation minus ,− ∆𝑢 = 𝑓

which minimizes the with the associated and strain energy as it is called one half integral mod

grad u square minus integral over omega f, f grad v square fv dx.

So, this you think of omega as a membrane, which is stretched over the thing and it is fixed to

the boundary gamma and is acted upon by a vertical force, whose density is given by f. And then

the Laplacian, so u gives you the vertical displacement of the membrane, I am talking of all .ℝ2

Now, similarly if you have

,∆ 𝑢 = 𝑓    𝑖𝑛   Ω 𝑢 = 0   𝑜𝑛 Γ

so this is nothing but the bending of a clamped plate. So, you assume that you have very thin

plate, which of course is a three-dimensional body. So, approximated by means of its middle

surface. So, that will be a two-dimensional body and then you have a force, which is acted on

this. And then clamping the plate along the boundary, means that you cannot even the not only

that it does not move, but it does not have any lateral, rotational movements etcetera.

And therefore, that is called clamping. So, when you clamp a plate and then you act it upon by

vertical force, then you have the bending vertical displacement is given by this equation. So, that

is it. So, now we have of course given you a weak formulation, which is in . Now,𝐻2
0
(Ω)

generally from a numerical analysis point of view, if you want to approximate solutions,

especially using methods like the finite element method etcetera.

Then is a difficult space, because the finite element approximations are very cumbersome𝐻2

and very complicated, whereas it is much better if you work with . So, we try to give you a𝐻1

mixed formulation, a different formulation which does not depend on the Lax-Milgram and

therefore but it is a of a different kind. So, you increase the number of unknowns and then you

see.
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So, let us, so let us give you an example of a mixed formulation. So, u delta square u equal to,

so , bounded open set and , this isΩ ⊂ ℝ𝑁 Γ = ∂Ω

∆2𝑢 = 𝑓    𝑖𝑛   Ω

.𝑢 = ∂𝑢
∂ν = 0   𝑜𝑛 Γ

And then you have the weak formulation u in , such that𝐻2
0
(Ω)



Ω
∫ ∆𝑢∆𝑣  𝑑𝑥 =

Ω
∫ 𝑓𝑣 𝑑𝑥  ,    ∀𝑣∈ 𝐻2

0
(Ω)

So, where .   𝑓∈ 𝐿2 (Ω)

So, now we so Regularity theorem, assume that the weak solution satisfies 𝑢 ∈ 𝐻3(Ω) ⋂ 𝐻
2

0

(Ω).

So, there is a theorem of Kondratieff which says that, this is true, if and omega is of𝑓∈ 𝐿2 (Ω)

class is a polygonal domain. And obviously for much more also, if it is a smoother domain, it

will, domain this is about the minimal hypothesis for this. So, this is a theorem of Kondratieff

which says this. So, this is not an unreasonable hypothesis.

So, now I am going to say sigma is and v equals . And we have a from sigma𝐻1
0
(Ω) 𝐻1

0
(Ω)

cross sigma to R. So, a of sigma tau equals integral sigma tau dx just the inner product, for all𝐿2

sigma tau in sigma. And then b is from sigma cross v into R, and b sigma v, of beta v, equals

minus integral of omega grad tau, dot grad v dx. So, tau in sigma and v in v. So, and then you

have of course that f is in .𝐿2 (Ω)
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Theorem:

Assume weak solution satisfies, the regularity condition namely . Then𝑢 ∈ 𝐻3 (Ω) ⋂ 𝐻2
0
(Ω)

(σ,  𝑢) = (− ∆𝑢 ,  𝑢) ∈ ∑× 𝑉.

So, this, so u is in , so , u is in . So, it is in , so this belongs to , is𝐻3 ∆𝑢 ∈ 𝐻1 𝐻2
0

𝐻1
0

∑× 𝑉

solution of

𝑎(σ,  τ) + 𝑏(τ,  𝑢) = 0,   ∀ τ ∈ ∑,

− 𝑏(σ,  𝑣) =
Ω
∫ 𝑓𝑣 𝑑𝑥,    ∀ 𝑣 ∈ 𝑉.  

So, you see we now have a system of equations with two unknowns. So, sigma is an unknown

and v is an unknown. So, we have increased the number of unknowns, increase the size of the

equation, but on the other hand we are working with simplest spaces namely and𝐻1 (Ω) 𝐻1
0
(Ω)

, which for approximation purposes is the same.

Also, this very often, it is not that u, which is interesting if you are for instance interested in fluid

mechanic problems, where the Biharmonic operator occurs naturally, in what is called the stream

function vertex verticity formulation. Then we are interested in Laplacian u directly. So, instead

of solving for u in and then differentiating it twice. So, you may you directly try to get an𝐻2
0
(Ω)

approximation of the Laplacian. So, that is why these mixed formulations, where you introduce a

new unknown is sometimes useful.
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So, further solution of star, whenever it exists is unique.

Proof,

So we have and therefore for every , which automatically in , you∑=− ∆𝑢 τ ∈ 𝐻1 (Ω) 𝐿2 (Ω)

have sigma tau plus integral Laplacian u tau equal to 0. And therefore, so this implies, that

integral on omega 1 sigma tau dx plus or rather I am going to apply Green's theorem minus

integral over u, you have that grad u, grad tau, dx, then plus integral du by d nu tau d sigma over

gamma. But this term goes to 0, because du by d nu is equal to 0.

And therefore, you have this is equal to 0, that is a sigma tau plus b tau u equal to 0, for every

, which is equal to sigma. So, in place of course sigma equals minusτ ∈ 𝐻1 (Ω) τ ∈ 𝐻3 (Ω)

Laplacian , which is capital sigma. So, that is what.τ ∈ 𝐻3 (Ω)

Now, you take v in d omega, so you have minus integral omega m, sigma delta v equals integral

fv, because you know the delta u, delta v, the equals f v, that is sigma equals minus delta u and

therefore you have this from the weak formulation. So, this is the weak formulation.
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And now once again you approximate by means, once again you apply Green's theorem, you get

integral grad sigma times grad v over omega, there will be no boundary term equals fv. And this

is true for all v in d omega. Now, both sides of this equation are continuous in the H 1 0 norm

and therefore this implies for all v in. So, by density and continuity for all equal to𝑣 ∈ 𝐻1
0
(Ω)

v.



So, you have that minus of b sigma v equals integral omega fv, for every . So,𝑣 ∈ 𝐻1
0
(Ω)

you have that the this pair satisfies this system. So, now we want to show that the solution

whenever it exists is unique. So, if sigma 1, see , sigma 2 two solutions of star. Then what𝑢
1

𝑢
2

does this mean? This means that if sigma equals sigma 1 minus sigma 2, u equals . Then𝑢
1

− 𝑢
2

you have a sigma tau plus b tau u equal to 0, for all tau in sigma and then b sigma v equal to 0,

for every b in v.

So, because you just subtracted the two equations the fv got cancelled and this is. So, if you now

so if you put tau equal to sigma in the first equation you get a sigma, sigma plus b sigma u that is

0. But then this is already 0 by the second equation and this implies that , that
Ω
∫ |σ|2 𝑑𝑥 = 0

implies that , that is .σ = 0 σ
1

= σ
2

Now, , so this now implies that b tau u equal to 0 for all tau in sigma and then you take tauσ = 0

equals u, because . So, it is in H 1 belongs to , which is of course𝑢 ∈ 𝐻1
0
(Ω) 𝑢 ∈ 𝐻1 (Ω)

contained in equal to sigma. So, if you do that, then you get integral mod grad u square𝐻1 (Ω)

equal to 0 and that implies implicit u equal to 0, since u equals H in and you have𝐻1
0
(Ω)

Poincare inequality.

And therefore, you have that also. So, this proves the uniqueness of the theorem. So,𝑢
1

= 𝑢
2

this completely proves the theorem.
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So, now let us look at this equation again, so suppose I have solution of star and see how it(σ, 𝑢)

we can recover these equations. So,

Ω
∫ στ  𝑑𝑥 −

Ω
∫ ∇τ · ∇𝑢  𝑑𝑥 = 0,   τ ∈ 𝐻1 (Ω).

Ω
∫ ∇σ · ∇𝑣  𝑑𝑥 =

Ω
∫ 𝑓𝑣  𝑑𝑥,    𝑣 ∈ 𝐻1

0
(Ω).

So, if you use , then this implies that𝑣 ∈ 𝐷(Ω)

− ∆σ = 𝑓  𝑖𝑛 𝐷'.

And the first equation, if you use , then you get thatτ ∈ 𝐷(Ω)

σ − ∆𝑢 ∈ 𝐷'(Ω),

And therefore, from these two together you get .∆2𝑢 = 𝑓 ∈ 𝐷'(Ω)

So, in the sense of distributions it satisfies the thing and you also have u is in . So, in𝐻1
0
(Ω)

place , that is . So, we now only have to recover the other boundaryγ
0
(𝑢) = 0 𝑢 = 0  𝑜𝑛  Γ

condition.
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So, you have that, you have that

−
Ω
∫ στ 𝑑𝑥 =

Ω
∫ ∇σ · ∇𝑢 𝑑𝑥 =

Ω
∫− τ∆𝑢 𝑑𝑥 +

Ω
∫ τ ∂𝑢

∂ν ,     𝑢 ∈ 𝐻2(Ω)

which is reasonable to assume, because . So, you assume that .τ∆𝑢 ∈ 𝐿2  𝑢 ∈ 𝐻2(Ω)

And therefore, now if you take , you get that τ ∈ 𝐷(Ω)

−
Ω
∫ στ 𝑑𝑥 =

Ω
∫ τ(− ∆𝑢) 𝑑𝑥,   ∀  τ ∈ 𝐷(Ω)

and therefore this is now completely a situation and therefore this implies that𝐿2

σ =− ∆𝑢,    𝑖𝑛  𝐿2(Ω).

And then going back to this equation here, this will imply that

Ω
∫ τ ∂𝑢

∂ν = 0,   ∀ 𝑢 ∈ 𝐻1(Ω).

And then we know we have already seen this in the Neumann problem, this implies that



Ω
∫ ∂𝑢

∂ν = 0,   ∀ 𝑢 ∈ 𝐻1(Ω).

And therefore, you have u satisfies both the boundary conditions and this in satisfies the

differential equation in the distribution sense. So, we can recover the original problem from this

weak formulation. So, this is called a mixed formulation, because you have two kinds of

unknowns, which are not only the primary unknown u, but you have introduced another

unknown sigma, which is this thing and from so for a fourth order problem, generally we work

with .𝐻2

But now in a mixed formulation, you only work with , which is a big improvement𝐻1 × 𝐻1
0

from the numerical analysis point of view as I already said. So, next time we will see a system of

equations which occurs in elasticity.


