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Neumann problems

We were looking at the examples of second order elliptic operators, and we were looking at

Dirichlet problems, that means the on the boundary the function is prescribed.
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Neumann problem:

Now, we want to look at what is called the Neumann problem. So, , bounded open setΩ ⊂ ℝ𝑁

and . So, if u is a smooth function defined on omega, then we denote byΓ = ∂Ω

∂𝑢
∂γ = 𝑜𝑢𝑡𝑒𝑟 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 = ∇𝑢 · γ|

Γ

and outer normal to∇𝑢 = ( ∂𝑢
∂𝑥

1
,..., ∂𝑢

∂𝑥
𝑁

) γ = (γ
1
,..., γ

𝑁
) Γ

So, you have the domain, it will depend on x of course, so at each point you have a tangent and

then you have the unit out of normal, which is like that. So, this is again dependent on x, nu

equals nu of x.  So, now we want to look at the following problem, so we consider



− ∆𝑢 + 𝑢 = 𝑓     𝑖𝑛  Ω

∂𝑢
∂γ = 0      𝑜𝑛   Γ  

So, this is the Neumann problem, we will call it N.

So, if you have, if u is smooth enough and then so which will imply that and𝑢 ∈ 𝐻1
0
(Ω) 

. And so if you multiply by Green's theorem, for every , we have the𝑓 ∈ 𝐿2(Ω) 𝑣 ∈ 𝐻1 (Ω)

following.
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So,

Ω
∫− ∆𝑢 · 𝑣 +

Ω
∫ 𝑢𝑣 =

Ω
∫ 𝑓𝑣.

So, if you integrate the first term by means of Green's formula, you will have

Ω
∫ ∇𝑢 · ∇𝑣 −

Γ
∫ ∂𝑢

∂γ · 𝑣 +
Ω
∫ 𝑢𝑣 =

Ω
∫ 𝑓𝑣. ⇒

Ω
∫ ∇𝑢 · ∇𝑣 +

Ω
∫ 𝑢𝑣 =

Ω
∫ 𝑓𝑣.



Since
Γ
∫ ∂𝑢

∂γ · 𝑣 = 0.

So, we have if , then weak formulation of N, this is nothing but integral omega find𝑓 ∈ 𝐿2(Ω)

, such that𝑢 ∈ 𝐻1 (Ω)

.
Ω
∫ ∇𝑢 · ∇𝑣 +

Ω
∫ 𝑢𝑣 =

Ω
∫ 𝑓𝑣,    ∀𝑣 ∈ 𝐻1(Ω)

This is called the weak formulation of the Neumann problem.
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So, of course if you have classical, or a smooth solution of N implies weak solution, as we have

just seen. So, weak formulation here, therefore the basic space is and then the linear form𝐻1(Ω)

is integral omega fv dx and the bilinear form is integral grad u grad v plus integral u v, which is

nothing but the inner product in . And therefore, by Lax-Milgram, there exists a unique𝐻1(Ω)

weak solution, that is immediate because you just have the inner product here, so that is

definitely elliptic. So, we have nothing to prove.

So, on the other hand, if you, if u is a weak solution taking

in the sense of distributions. So, as distributions youφ ∈ 𝐷(Ω) ⇒ − ∆𝑢 + 𝑢 = 𝑓  𝑖𝑛  𝐷(Ω) 

will have that this is certainly true. So, now let us assume, weak solution So, let𝐻1(Ω) ⋂ 𝐻2(Ω)

us assume that you have some additional smoothness, which again as I have repeatedly said is by

means of a regularity theorem and generally for reasonable domains, this will always be true and

therefore we will see this.

So, now we get back by going back retracing the integration by parts formula. So, star implies

minus Laplacian u times v, because so here this means that Laplacian of u belongs to , anyway𝐿2

it is in the sense of distributions and anyway you have this, minus Laplacian u, v integral omega



plus integral , v d sigma on gamma plus integral on omega uv dx equals integral on omega fv∂𝑢
∂γ

dx.

So, now we take v in, so we take v and , then of course this term will vanish. So, this will𝐷(Ω)

imply that minus integral omega, minus Laplacian u plus u minus f times v dx equal to 0.
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Now, we know that are all in and you have dense in . So, this− ∆𝑢, 𝑢, 𝑓 𝐿2(Ω) 𝐷(Ω) 𝐿2(Ω)

implies that minus Laplacian u plus u equal to f in , so as function of , this is true.𝐿2(Ω) 𝐿2(Ω)



So, now if you go back to star, so call this double star, then double star implies, that integral

omega minus Laplacian u plus u minus f into v dx plus integral on gamma du by d nu, v d sigma

equal to 0 for every .𝑢 ∈ 𝐻1(Ω)

But then minus Laplacian u plus u minus f is a function, which is 0. So, equal to 0 and𝐿2

therefore this implies that integral on gamma du by d nu times v d sigma equal to 0. Now, 𝐻1(Ω),

γ
0
: 𝐻1/2(Γ) → 𝐻1/2(Γ),

is dense in .𝐻1/2(Γ) 𝐿2(Γ)

Therefore, this shows that, so call this dagger, so dagger true for all , because of this𝑣 ∈ 𝐻1/2(Γ)

ontoness of gamma naught. And therefore, you have this implies that du by d nu equal to 0 in

. So, we show that, if u is in , this satisfies the boundary condition.𝐿2(Γ) 𝐻2
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So, now we want to make a remark. So, there is a difference between the Dirichlet and the

Neumann problems. In the Dirichlet problem, the boundary condition was included in the space

concerned, space where we look for a solution. So, we worked in , or we worked with the𝐻1
0

translate of by means of a lift of the boundary conditions. So, all functions where we are𝐻1
0

looking for a solution will automatically satisfy the boundary condition.

In the Neumann problem, boundary conditions came as a natural consequence of the weak

formulation. So, this is why the Dirichlet condition is an essential boundary condition, and the

Neumann condition is a natural boundary condition.
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So, now let us look at the inhomogeneous problem,

− ∆𝑢 + 𝑢 = 𝑓     𝑖𝑛  Ω

∂𝑢
∂γ = 𝑔      𝑜𝑛   Γ.   

So, now we assume that f is in and g is in , then again if you multiply by means of v𝐿2(Ω) 𝐿2(Γ)

and write it, so you will get integral grad u, grad v on omega minus integral on gamma du by d

nu into v. And then plus integral on omega u v equals integral on omega f v.



So, if you now put in the condition du by d nu equal to g on gamma. Therefore, you will get the

weak formulation find , such that for every , we have the 𝑢 ∈ 𝐻1(Ω) 𝑣 ∈ 𝐻1(Ω)

.
Ω
∫ ∇𝑢 · ∇𝑣𝑑𝑥 −

Γ
∫ ∂𝑢

∂γ · 𝑣 𝑑𝑥 +
Ω
∫ 𝑢𝑣𝑑𝑥 =

Ω
∫ 𝑓𝑣 𝑑𝑥  ∀𝑣 ∈ 𝐻1(Ω)

Weak formulation:
Ω
∫ ∇𝑢 · ∇𝑣𝑑𝑥 +

Ω
∫ 𝑢𝑣𝑑𝑥 =

Ω
∫ 𝑓𝑣 𝑑𝑥 +

Γ
∫ 𝑔𝑣 𝑑𝑥,    ∀𝑣 ∈ 𝐻1(Ω)

And the right hand side

mod fv is less than equal to mod f0 omega mod v0 omega, which is less than equal to mod f0

omega norm g, and norm v, 1 omega and integral on gamma gv is less than equal to mod g0

gamma, mod v0 gamma. But we know this is less than equal to, because v is trace operator.

Therefore, mod g0 gamma C times norm v1 omega, we are just having. So, by the trace theorem,

and therefore you have that the right hand side is continuously.

So, we have the basic space is , the linear form is fv dx plus g v d sigma and then the𝐻1(Ω)

bilinear form is grad u integral grad u, grad v plus integral uv. And that is again the inner product

and therefore it is elliptic. And consequently Lax-Milgram implies, there exists a unique𝐻1

weak solution.

So, again if , then and you will have gamma 1 of u equals g,𝑢 ∈ 𝐻2(Ω) ⋂ 𝐻1(Ω) γ
1
(𝑢) ∈ 𝐿2(Γ)

and this of course is nothing but , by the Green’s formula you can just exactly as we said. And∂𝑢
∂γ

we also have that the weak solution satisfies the differential equation in the sense of

distributions. And of course, if u is in , functions. And therefore,𝐻2(Ω) − ∆𝑢 + 𝑢 = 𝑓 ∈ 𝐿2

you will get that .γ
1
(𝑢) = 𝑔

So, everything will come exactly as we have seen before and this will imply also that g belongs

to in this case. So, necessarily it will be unless it is in a you cannot expect that u𝐻1/2(Γ) 𝐻1/2(Γ)

will be in .𝐻2(Ω)
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So, up to now there was a difference between the Dirichlet and Neumann problems, we

had other than the imposition of the boundary condition, namely that in the Dirichlet case, we

looked at − ∆𝑢 + 𝑢 = 𝑓     𝑖𝑛  Ω

𝑢 = 𝑔     𝑜𝑛   Γ.



And here I always seem to put , because I wanted ellipticity in the norm.− ∆𝑢 + 𝑢 = 𝑓  𝐻1(Ω)

And since we do not have Poincare inequality for in a bounded domain, we had to put this𝐻1(Ω)

extra term.

So, now what happens if I do not have that extra term. So, if I have in and u,− ∆𝑢 + 𝑢 = 𝑓  Ω

, then the weak formulation will be , such that again you multiply∂𝑢
∂γ = 𝑔   𝑜𝑛  Γ 𝑢 ∈ 𝐻1(Ω)

integrate by parts and write everything will be grad u dot grad nu, dx equals integral of omega fv

grad nu grad v. So, the fv dx plus integral on gamma gv d sigma for every .  𝑣 ∈ 𝐻1(Ω)

So, now if I take omega is bounded, so v identically 1, , then if I substitute this will  𝑣 ∈ 𝐻1(Ω)

imply that 0 equals integral of f dx plus integral j on gamma g d sigma. So, this is a necessary

condition, for the existence of a solution. So, there is a compatibility condition is called

compatibility condition.

Now, if you write it out in the functional analytic framework in using the operator capital G,

which maps the function to the f data to the solution and so on, then there is we can, we can get a

compact operator by relic’s theorem, as we have done before in the general second order elliptic

Dirichlet case. And one can prove by Fredholm alternative implies that, this is also sufficient. So,

this is a necessary and sufficient condition for the existence of a solution, which comes from the

Fredholm alternative.

Now, this is because if you look at the Laplacian u equal to 0, in and , theΩ  ∂𝑢
∂γ = 0  𝑜𝑛 Γ

homogeneous problem, then this will mean that u is a constant, one can prove if omega is

connected of course. And what is the Fredholm alternative, if you want to have a solution for the

inhomogeneous equation, we have already seen you can show that, this map is the map with g

star, which is associated with this will be the same as g namely it is sulphate joint and therefore it

should be orthogonal to the kernel of this kernel.

And that means there exists a solution if only if f and g, belong, are orthogonal to the

function v equal to 1. And that is precisely this condition, which we have put here. So, by

the Fredholm alternative one can show that this is in fact the solution. So, so the general



you do not have a solution for this problem unless you have that, that is this compatibility

condition is satisfied.
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Now, we can also study the Neumann problem, for the general second order elliptic operator.

So, for instance satisfying uniform ellipticity−
𝑖,𝑗=1

𝑁

∑ ∂
∂𝑥

𝑖
𝑎

𝑖.𝑗
∂𝑢
∂𝑥

𝑗
( )𝑑𝑥 + 𝑢 = 𝑓   (𝑎

𝑖,𝑗
)

condition, and you can so if you now write the corresponding weak formulation.

So, plus Neumann condition, so then what will be the condition find such that, for all𝑢 ∈ 𝐻1(Ω)

, you have𝑣 ∈ 𝐻1(Ω)

Ω
∫

𝑖,𝑗=1

𝑁

∑ 𝑎
𝑖.𝑗

∂𝑢
∂𝑥

𝑗

∂𝑣
∂𝑥

𝑖
𝑑𝑥 −

Ω
∫

𝑖,𝑗=1

𝑁

∑ 𝑎
𝑖.𝑗

∂𝑣
∂𝑥

𝑗
γ

𝑖
𝑑σ +

Ω
∫ 𝑢𝑣 𝑑𝑥 =

Ω
∫ 𝑓𝑣  𝑑𝑥.   

So, the correct natural boundary condition associated to this operator is

.∂𝑢
∂γ

𝑛
=

𝑖,𝑗=1

𝑁

∑ 𝑎
𝑖.𝑗

∂𝑣
∂𝑥

𝑗
γ

𝑖
= 0

And this is called the co normal to the differential operator, which is given above. So, this is

about the Neumann problem.
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Now, we can look at various other kinds of boundary value problems, we will see some of them

in the exercises and so on. So, you can have a Robin boundary condition, which is a combination

of the Dirichlet and the boundary Neumann condition, which is equal to so. So, you get

in . So, what is the Robin condition? This will be u, ,− ∆𝑢 + 𝑢 = 𝑓  Ω ∂𝑢
∂γ + α𝑢 = 0,   α > 0

So, this is called the Robin condition.

Now, you can also have the oblique derivative, you have namely

, So, will be derivative along a tangential direction in, in twoα
1

∂𝑢
∂γ + α

2
∂𝑢
∂τ ,   𝑜𝑛 Γ ∂𝑢

∂τ =

dimensions, you have only one, one tangential direction in higher dimensions you will have more

than one. And therefore, you if tau is one of the unit tangent vectors at a point. So, in that

direction you can have. So, this is called the oblique derivative problem.
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You can also have mixed problem,

mixed boundary conditions. So, for instance you have

− ∆𝑢 + 𝑢 = 𝑓     𝑖𝑛  Ω

𝑢 = 0     𝑜𝑛   Γ
1

∂𝑢
∂γ = 0      𝑜𝑛   Γ

2
  

.Γ = Γ
1

⋃ Γ
2
,   Γ

1
⋂ Γ

2
= ϕ

So, you have these things. And now in this case the weak formulation would be integral on

omega

.𝑢 ∈ 𝑉  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  
Ω
∫ ∇𝑢 · ∇𝑣𝑑𝑥 =

Ω
∫ 𝑓𝑣 𝑑𝑥  ∀𝑣 ∈ 𝑉

𝑉 = {𝑣 ∈ 𝐻1(Ω)   :  𝑣|
Γ

1

= 0}



So, you take the trace and then its restriction to should be equal to 0. If the N-1dimensionalΓ
1

surface measure of is strictly positive, then Poincare still holds, that is because you haveΓ
1

essentially what is this, if the first gradient is 0, then the function is a constant. But if it is 0 on a

positive part of the boundary with positive surface measure, then the constant function has to be

identically 0.

So, that is an idea, so Poincare still implies there exists a unique weak solution. And then if you

can go and check that this condition we have imposed on the boundary. So, the Dirichlet

condition, which is essential condition and if you work backwards with this bilinear form and

write down explicitly the Green’s formula and so on, then you should be able to show that a

smooth solution say , if and so and , intersection , then this will imply𝐻2 𝑓 ∈ 𝐿2 𝑓 ∈ 𝐿2 𝑢 ∈ 𝐻2 𝑉

and weak solution, this will of course imply that So, this you can just check, it is∂𝑢
∂γ |

Γ
2

= 0.   

very easy. So, now we will next, the next item on the agenda is to go and still look at some other

kinds of problems. So, we have been looking at second order problems with various boundary

conditions. So, the next thing we will do is, to look at the Dirichlet problem for the biharmonic

operator, which is a fourth order differential operator.


