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We now turn to more general second order elliptic operators. So, as usual bounded open set,Ω

bounded domain as I also call it and . So, let for all . And suchΓ = ∂Ω 𝑎
𝑖,𝑗

∈ 𝐶1(Ω) 1 ≤ 𝑖, 𝑗 ≤ 𝑁

that for all and for all we have𝑥 ∈ Ω ξ = (ξ
1
,..., ξ

𝑁
) ∈ ℝ𝑁

𝑖,𝑗=1

𝑁

∑ 𝑎
𝑖.𝑗

(𝑥)ξ
𝑖
ξ

𝑗
≥ α|ξ

𝑖
|2  ,

And where is a constant independent of x and .α > 0 ξ

So, then you consider the following differential operator

−
𝑖,𝑗=1

𝑁

∑ ∂
∂𝑥

𝑖
𝑎

𝑖,𝑗
∂𝑢
∂𝑥

𝑖
( ) + 𝑎

0
𝑢 = 𝑓    𝑖𝑛 Ω  ,

𝑢 = 0    𝑜𝑛 Γ .



So, this is called a second-order elliptic operator, uniformly elliptic in divergence form. The way

you have written, usually, a second-order operator would have second derivatives, first

derivatives, and lower order, zero-order term.

Here the second derivatives and first derivatives have been combined in a special way and

therefore this is called the divergence form of the operator. So, and we now look for, find u such

that so −
𝑖,𝑗=1

𝑁

∑ ∂
∂𝑥

𝑖
𝑎

𝑖,𝑗
∂𝑢
∂𝑥

𝑖
( ) + 𝑎

0
𝑢 = 𝑓    𝑖𝑛 Ω  , 𝑢 = 0    𝑜𝑛 Γ .
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So, we assume now that and then again so now if I multiply by phi so be𝑓 ∈ 𝐿2(Ω) φ ∈ 𝐷(Ω)

multiply and integrate by parts and therefore this is where the d by d xj form will come into

place. So, you will get

Ω
∫

𝑖,𝑗=1

𝑁

∑ 𝑎
𝑖,𝑗

∂𝑢
∂𝑥

𝑖

∂𝑣
∂𝑥

𝑗
 𝑑𝑥 +

Ω
∫ 𝑎

0
𝑢𝑣𝑑𝑥 =

Ω
∫ 𝑓𝑣 𝑑𝑥  ,  𝑢,  𝑣 ∈ 𝐻1

0
(Ω).



So, if belong to, so now everything is continuous as far as is concerned 𝑢, 𝑣 ∈ 𝐻1
0
(Ω)  𝐻1

0
(Ω)

phi is dense there and therefore we get for all v, so you get that. So, find u in , so that  𝐻1
0
(Ω) 𝐻1

all these integrals make sense and 0 because it is in vanishes on the boundary such that you have

𝑎(𝑢, 𝑣) =
Ω
∫

𝑖,𝑗=1

𝑁

∑ 𝑎
𝑖,𝑗

∂𝑢
∂𝑥

𝑖

∂𝑣
∂𝑥

𝑗
 𝑑𝑥 +

Ω
∫ 𝑎

0
𝑢𝑣𝑑𝑥,   𝑢, 𝑣 ∈ 𝐻1

0
(Ω)

So, this is the, so we call this the weak formulation. So, the weak formulation you always have to

mention three things what is the vector space, what is the bilinear form, what is the linear form.

So, the linear form is , , bilinear form is given by this expression
Ω
∫ 𝑓𝑣 𝑑𝑥  ,   𝑣 ∈ 𝐻1

0
(Ω) 𝑓 ∈ 𝐿2

here and the vector space of course is , so that specifies. So, this is called the𝑎(𝑢, 𝑣) 𝐻1
0
(Ω)

weak formulation of star, so star is the differential equation here with, together with the boundary

conditions.

So, again one can check that if you have a weak formulation then it satisfies differential equation

in the sense of distributions and of course the boundary condition is satisfied because we have

put it in the space itself.
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And so we now have if a naught is strictly positive in omega then elliptic that is𝑎(𝑢, 𝑣) 𝑖𝑠  𝐻1

easy to see because of the condition of the ellipticity condition. What is the ellipticity condition?

Recall, this is called the ellipticity condition. So, if you use this fact and for and youξ
𝑖

ξ
𝑗

substitute , , then you will get that a u, u is greater than equal to alpha times integral mod∂𝑢
∂𝑥

𝑖

∂𝑣
∂𝑥

𝑖

u square, mod grad u square.

So, this is therefore, by Lax-Milgram there exists a unique weak solution and you can go back

and forth as I said you can, if it is a classical solution then you can show it gives you a weak

solution, if it is a weak solution which is sufficiently smooth then you get a classical solution.
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So, in addition from the abstract theorems we have proved in addition if a is symmetric that is

, then a is symmetric and u minimizes over where𝑎
𝑖,𝑗

= 𝑎
𝑗,𝑖

,   ∀𝑖, 𝑗 𝐽 𝐻1
0
(Ω)

𝐽(𝑣) = 1
2

Ω
∫

𝑖,𝑗=1

𝑁

∑ 𝑎
𝑖,𝑗

∂𝑣
∂𝑥

𝑖

∂𝑣
∂𝑥

𝑗
 𝑑𝑥 + 1

2
Ω
∫ 𝑎

0
𝑣2𝑑𝑥 −

Ω
∫ 𝑓𝑣 𝑑𝑥 
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More generally we can consider the following so satisfies ellipticity condition. So, I also𝑎
𝑖,𝑗

want to show for weak formulation to make sense enough to assume , a naught are all in𝑎
𝑖,𝑗

that is enough to make the integrals meaningful. So, you can always suppose a weak𝐿∞(Ω)

solution and then regularity theorem if you can prove using extra properties of the , a naught𝑎
𝑖,𝑗

and of the domain smoothness, etcetera. Then one can show that examine the question whether a

weak solution is a classical solution or not.

So, weak solutions are what we will generally look for and numerical calculations will be

attempting to approximate the weak solutions only. And therefore, the classical solution is a

curiosity if you have it, it is fine, otherwise it still does not matter. So, now you consider, you

have

−
𝑖,𝑗=1

𝑁

∑ ∂
∂𝑥

𝑖
𝑎

𝑖,𝑗
∂𝑢
∂𝑥

𝑖
( ) +

𝑖=1

𝑁

∑ 𝑎
𝑖

∂𝑢
∂𝑥

𝑖
+ 𝑎

0
𝑢 = 𝑓    𝑖𝑛 Ω  ,

𝑢 = 0    𝑜𝑛 Γ .



So, again satisfy ellipticity and ai are all in c of omega bar so again we will see in a moment𝑎
𝑖,𝑗

that we do not need so much, we will just see that everything is .𝐿∞
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So, weak solution of this problem is find u in a so that is the vector space now we have to𝐻1
0
(Ω)

specify that

𝑎(𝑢, 𝑣) =
Ω
∫

𝑖,𝑗=1

𝑁

∑ 𝑎
𝑖,𝑗

∂𝑢
∂𝑥

𝑖

∂𝑣
∂𝑥

𝑗
 𝑑𝑥 +

Ω
∫

𝑖=1

𝑁

∑ 𝑎
𝑖

∂𝑢
∂𝑥

𝑖
+

Ω
∫ 𝑎

0
𝑢𝑣𝑑𝑥,   𝑢, 𝑣 ∈ 𝐻1

0
(Ω)

So, once again you can check that this will satisfy the differential equation in the sense of

distributions and we have imposed the boundary condition automatically and therefore this is

what we call a weak solution of the problem. And in this case again enough to assume , ,𝑎
𝑖,𝑗

𝑎
𝑖,

𝑎
𝑖

naught are all in L infinity omega then this makes sense and therefore we can talk of weak

solutions of this differential operator.
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Now, bilinear form is not symmetric, not symmetric in general. If it is elliptic then we𝐻1
0
(Ω)

can use Lax-Milgram to prove the existence of a unique solution. But this may not happen. So,

therefore, we have the following theorem. So,

Theorem,

bounded open set in satisfying ellipticity condition ai, a naught also inΩ ⊂ ℝ𝑁 𝑎
𝑖,𝑗

𝐿∞(Ω)

and f is in .𝐿∞(Ω) 𝐿2(Ω)



If f equal to 0 the set of solutions to double star, so let us call this equation, this is the weak

formulation is a finite dimensional subspace of . So, let dimension equal to d. Then there𝐻1
0
(Ω)

exists a d dimensional subspace of capital F such that double star has a solution if and𝐿2(Ω)

only if belongs to the orthogonal complement in . So, this is the orthogonal complement𝐹 𝐿2(𝐹)

of .𝐹 𝑖𝑛 𝐿2(Ω)
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Proof:



So, now so we will prove this and you will see how nicely functional analysis comes to our help

in solving these problems. So, choose lambda positive such that a naught of x plus lambda is

greater than equal to gamma which is strictly bigger than 0. So, this can always be done because

a naught is L infinity, so it is bounded so if I add a sufficiently large constant, then it will be

always strictly positive and you can find a minimum value which is again strictly positive for all

x in omega.

So, now let infinity omega less than equal to beta, for all 0 less than equal to i less|𝑎
0,𝑖

| = 0,  

than equal to N. Now, let v be arbitrary in then you look at a v, v plus lambda integral on𝐻1
0
(Ω)

omega v square dx. Now, because of the ellipticity a v, v. So, if you look at this expression here a

v, v the first term will be du by d xj du by d xi sigma ij and that is greater than equal to alpha𝑎
𝑖,𝑗

times mod u square d by d xi 1 omega.

So, du by d xi square. And therefore, you have this is greater than equal to alpha times mod u,

mod v square on 1 omega. Then minus, so here you have 's are less than beta and therefore if𝑎
𝑖

you do the Cauchy-Schwarz inequality here you get mod u 1 omega mod v0 omega, so u equals

v again. so if you and since you are going to get a lower bound you put a minus sign, this is

minus beta mod v1 omega mod v0 omega.

Plus, then you have a naught v square, a naught v square plus lambda v square is also there and

that is greater than equal to gamma. So, gamma mod v square 0 omega. And that is equal to

alpha times mod v square 1 omega and then we complete the squares for these two terms and

therefore you have gamma plus gamma power half mod omega minus beta by 2 gamma𝑣
0

power minus half mod v1 omega whole square.

So, if you take the square term you have gamma mod v square 0 omega which is already there

minus 2 beta and then the gamma will get cancelled, so and the 2 will also get cancelled beta

times mod omega mod omega so we have this thing. And then we have a crossed, second𝑣
1

𝑣
0

term which is this one, so you, we have to subtract that minus beta by 4 gamma times mod v

square 1 omega, beta square. So, this is therefore greater than or equal to so this square term is



greater equal to 0 we ignore it, alpha minus beta square by 4 gamma times mod v square 1

omega.
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So, if we choose lambda large enough implies gamma large, we have, we can have alpha minus

beta square by 4 gamma greater or equal to 0. And so a plus lambda times is elliptic that𝐻1
0
(Ω)

is plus lambda times integral omega u v. This bilinear form is elliptic. So, if f𝑎(𝑢, 𝑣) 𝐻1

belongs to by Lax-Milgram, there exists a unique u in such that a u, v plus lambda𝐿2(Ω) 𝐻1
0
(Ω)

times integral uv on omega dx equals integral fv dx for every v in .𝐻1
0
(Ω)

Then by the ellipticity we know that f mapping to u which I am going to call g of f is continuous

by ellipticity, we already know that if you have a u, v equals fv and then we have seen that f

going to u is a continuous mapping g and it is 1 over the ellipticity constant is the norm of that

operator.

Now, so you have from into you have f here going to u and now this will go𝐿2(Ω) 𝐻1
0
(Ω)

back to u so this is inclusion in . And we know this is, this inclusion is compact by𝐿2(Ω)

Rellich-Kondrachov theorem into is elliptic because omega is a bounded open set𝐻1
0
(Ω) 𝐿2(Ω)

and consequently composition of compact mappings is compact. And therefore, you have the



𝐺: 𝐿2(Ω) → 𝐿2(Ω),  

is compact.
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Now, if u solution of double star, what is double star, let us it is a weak formulation of the

equation here, which is this expression here is equal to this. Then we if you add a lambda𝑎(𝑢, 𝑣)

uv to both sides then it, you get the this thing. Then you get

𝑎(𝑢, 𝑣) + λ
Ω
∫ 𝑢𝑣 =

Ω
∫ 𝑓𝑣 +

Ω
∫ 𝑢𝑣
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So, you let, put , then you get and is what, . So,𝑓 + λ𝑢 = 𝑣 λ𝑢 = λ𝐺(𝑓 + λ𝑢) λ𝑢 λ𝑢 = 𝑣 − 𝑓

you substitute all these things here in this equation. So, you get .𝑣 − 𝑓 = 𝑣 − λ𝐺𝑣 = 𝑓

So, if you can solve for v you solve for u because . So, solving for u is same as𝑢 = 𝑣 − 𝑓
λ

solving for lambda, for v. But none, G is a compact operator and therefore its spectrum consists

only of eigen values, non-zero spectrum.
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So, either lambda inverse eigen value of g are not an eigen value of G or lambda inverse is eigen

value of G. So, if inverse is not eigen value, then is invertible implies there existsλ 𝐼 − λ𝐺

unique v for every f implies there exists a unique u for every f. That is d equal to 0, the set of all

solutions for which f equal to 0 is the 0 solution only and therefore d equal to 0.

If lambda inverse is an eigen value, then it has finite geometric multiplicity. Since G is compact.

So, if you have a compact space and you have a non-zero eigen value, then it is of course has to

be finite, the null space that is the space of eigen vectors will be finite dimensional.
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Then then by Fredholm alternative has a solution if and only if𝑣 − λ𝐺𝑢 = 𝑓

because you know range of is nothing but𝑓 ∈ 𝑘𝑒𝑟 (𝐼 − λ𝐺*)⊥ 𝑟𝑎𝑛𝑔(𝐼 − λ𝐺)

. So, this is the standard theorem, this is called the Fredholm alternative.𝑘𝑒𝑟 (𝐼 − λ𝐺*)⊥

And therefore, you have an dimension of is𝑑𝑖𝑚 𝑘𝑒𝑟 (𝐼 − λ𝐺*)( ) = 𝑑𝑖𝑚 𝑘𝑒𝑟 (𝐼 − λ𝐺 )( ) = 𝑑  

equal to dimension of which is equal to d. And therefore, you have the, this is our F and you

have, so f, small f must be then capital F perp only then you have a solution. So, this proves that

you have, this proves that theorem. So, we will continue with further examples later.


