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We were looking at a lot of abstract variational problems. Now we will see several

examples of applications of the general result, especially the Lax-Milgram lemma. So,

examples of boundary value problems.

So, we first look at the Dirichlet problem for second-order elliptic equation, operators.

So, throughout, whether I say is a bounded domain and . So, this is theΩ ⊂ ℝ𝑁 Γ = ∂Ω

thing.

So, we consider the problem

− ∆𝑢 = 𝑓  𝑖𝑛 Ω

𝑢 = 0  𝑜𝑛 Γ

So, this is a problem, is a Laplacian and f is some given data. So, in the domain it∆

should satisfy this differential equation, and on the boundary, it should vanish. So,

given function.𝑓: Ω → ℝ𝑁



So classical solution means , and (omega) and𝑢 ∈ 𝐶2(Ω),   𝑢 = 0 𝑜𝑛 Γ 𝑓 ∈ 𝐶 (Ω),

point wise in omega. So, this is what we would look at, a classical− ∆𝑢 = 𝑓  𝑖𝑛 Ω

solution.

So, if u is a classical solution let us multiply this by a C infinity function with compact

support. So, let . So, you haveφ ∈ 𝐷(Ω)

−
Ω
∫(∆𝑢)φ 𝑑𝑥 =

Ω
∫ 𝑓φ 𝑑𝑥

So now let us use Green's theorem. So, you get

Ω
∫ ∇𝑢∇φ 𝑑𝑥 =

Ω
∫ 𝑓φ 𝑑𝑥

Then there is no boundary term because and therefore there will be noφ ∈ 𝐷(Ω)

boundary term equals . So, this is what we get when we satisfy this.
Ω
∫ 𝑓φ 𝑑𝑥
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So then, so, so , f is in, so therefore the, implies that, and , and𝑢 ∈ 𝐶2(Ω) 𝑢 = 0 𝑜𝑛 Γ

therefore this implies that u belongs to . And then . And therefore,𝐻1
0
(Ω) 𝑓 ∈ 𝐶 (Ω)

this implies that .𝑓 ∈ 𝐿2(Ω)

So now if you look at star, by, since dense in , by continuity and density, we𝐷(Ω) 𝐻1
0
(Ω)

have star valid for all v, , not just, because of the density. This we call as theφ ∈ 𝐻1
0
(Ω)

weak formulation. So, we have weak formulation. Find such that for every𝑢 ∈ 𝐻1
0
(Ω)

we have𝑣 ∈ 𝐻1
0
(Ω)

for every .
Ω
∫ ∇𝑢∇𝑣 𝑑𝑥 =

Ω
∫ 𝑓𝑣 𝑑𝑥 𝑣 ∈ 𝐻1

0
(Ω)

So, there is nothing about the second derivative in, even though the given differential

equation is a, is called the is a second order differential equation, namely, the its, for the

Laplace operator, this equation does not involve anything about second derivatives.

We are looking at a function on which the vector space involves only function and its first

distribution derivatives. And the formulation here also, the equation which we have

written for every does not involve any second derivatives at all. So, that is𝑣 ∈ 𝐻1
0
(Ω)

why we call this a weak formulation. So, we (as) we say that this is a solution, a weak

solution of the original equation.
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So let us, first let us dispose of the question of existence. So, existence of weak solution.

So, is a Hilbert space. f v going to . So,𝐻1
0
(Ω)

Ω
∫ 𝑓𝑣 𝑑𝑥

,
Ω
∫ 𝑓𝑣 𝑑𝑥

||||

||||
≤ ||𝑓||

0,Ω
||𝑣||

0,Ω

and by Poincare’s inequality this is

≤ 𝐶 ||𝑓||
0,Ω

||𝑣||
1,Ω

And therefore, this is a continuous linear functional on this thing.

And you have that a of u v equals integral grad u grad v on omega, so mod a u v is less

than equal to mod u 1 omega mod v 1 omega and you have that a v, v equals integral mod

grad v square and that is of course mod v square 1 omega, which is a norm on, so mod 1

omega norm, on , because omega is bounded and we have Poincare’s inequality.𝐻1
0
(Ω)

So, we have the solution. So, by Lax-Milgram, so we have a continuous, symmetric and

elliptic, bilinear form, and a linear functional on the other side, therefore by

Lax-Milgram there exists a unique u satisfying double star. So, there exists a unique

solution.
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Further, because by the symmetry of the bilinear form we have that u equals,

equals minimum over all v in , of where𝐽(𝑢) 𝐻1
0
(Ω) 𝐽(𝑣)

𝐽(𝑣) = 1
2

Ω
∫ |∇𝑣|2 𝑑𝑥 −

Ω
∫ 𝑓𝑣 𝑑𝑥.

So, this is the thing.

Now

Remark. We can also have . And then instead of integral f v omega𝑓 ∈ 𝐻−1(Ω)

this will be replaced by the duality bracket f in . So, the ins, that is the only𝐻−1 (Ω)

change, otherwise this will have a solution. So, we have the following, we have proved

the following theorem.

Theorem:

bounded open set f in , then there exists a unique weak solutionΩ Γ = ∂Ω, 𝐿2(Ω)

. Further, u minimizes J over . So, this is the theorem. So, now let us𝑢 ∈ 𝐻1
0
(Ω) 𝐻1

0
(Ω)

see how the weak solution is connected to the original equation.



Proof:

So, suppose we have, so we have

,
Ω
∫ ∇𝑢∇φ 𝑑𝑥 =

Ω
∫ 𝑓φ 𝑑𝑥,   ∀φ ∈ 𝐷(Ω)

for instance. But this tells you that minus Laplacian u acting on phi equals f phi as

distributions and therefore this implies that minus Laplacian u equals f in . So, the𝐷'(Ω)

weak solution is connected to the original differential equation. Namely, it satisfies the

same, (eq) differential equation in the sense of distributions.
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Now, so assume now, u belongs to intersection . Then f will belong to c of𝐻1
0
(Ω) 𝐶2(Ω)

omega bar and minus Laplacian u f belong to L2 of omega because it is in H u, is in ,𝐻2

and also . And therefore, you have, and they are equal as functions and𝑢 ∈ 𝐻2(Ω) 𝐷(Ω)

is dense in . This implies that minus Laplacian u equals f in . That means𝐿2(Ω) 𝐿2(Ω)

minus Laplacian u equals f almost everywhere but they are continuous functions, and so

minus Laplacian u equals f. Further, u restricted to gamma equal to 0.
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So therefore, you have that, it is a classical solution. Therefore, weak solution plus

smoothness implies classical solution. So, the question is, when do you have the

smoothness. So, this is guaranteed by means of what is called a regularity theorem. So,

we have to prove it each time. So, for given any problem you have a weak solution, weak

formulation, you have weak solution, then by some other technique you have to show that

it is a regularity theorem.

Now for the record, we will say, for instance, that if omega is a smooth domain, how

smooth I am not specifying, let us say reasonably smooth, then, and u is in weak𝐻1
0
(Ω)

solution, f in , this will imply that u belongs to . If u belongs to𝐿2(Ω) 𝐻2(Ω) ⋂ 𝐻1
0
(Ω)

, this will imply that u belongs to . These are examples of𝑓 ∈ 𝐻𝑚(Ω) 𝐻𝑚+2(Ω)⋂ 𝐻1
0
(Ω)

regularity theorems for the Laplace operator with reasonably smooth domains.

And therefore, if you, m is large enough then of course with the Sobolev embedding

theorems you can deduce the u is differentiable, so, as many times as you want, and then

you can deduce that it is a classical solution. So, this is how we go. So, the regularity

theorem needs to be proved. It is, it is not an obvious thing. And that is a different story.
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Inhomogeneous Dirichlet problem:

So now let us look at the inhomogeneous Dirichlet problem. Dirichlet problem means

you are prescribing the value of the function on the boundary. This is called a Dirichlet

problem. And therefore, homogeneous means u equal to 0 on the boundary,

inhomogeneous means you have some other function.

So, , given, and we want to look at the problem𝑓: Ω → ℝ 𝑔: Ω → ℝ

− ∆𝑢 = 𝑓  𝑖𝑛 Ω

.𝑢 = 𝑔  𝑜𝑛 Γ

So, this is called a inhomogeneous Dirichlet problem.

So as usual if you multiply by , you getφ ∈ 𝐷(Ω)

for every
Ω
∫ ∇𝑢∇φ 𝑑𝑥 =

Ω
∫ 𝑓φ 𝑑𝑥 φ ∈ 𝐷(Ω),

because again we used integration by parts and there was no boundary term because phi

is 0 on the boundary. So, we are trying to look for, so we look for u in so that𝐻1
0
(Ω)

these integrals make sense.



And this will imply of course that gamma naught u will have to belong to . That𝐻1/2(Γ)

is the Trace theorem which we have proved. So, therefore, we assume, so assume g

belongs to . Only then we can try to make sense of the weak solution.𝐻1/2(Γ)
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So now let, so you have, what you have, from gamma naught to , this is a𝐻1(Ω) 𝐻1/2(Γ)

continuous and onto. So, when you have onto from a Hilbert space then always you know

that there exists a right inverse. So, there exists a right inverse from to .𝐻1/2(Γ) 𝐻1(Ω)

That is, given g in there exists a , and that is right inverse that means𝐻1/2(Γ) 𝑢∼ ∈ 𝐻
1
(Ω)

u tilde, gamma naught of u tilde equals g such that, and further, you can say norm of u

tilde in will be less than equal to some C times norm g in . So, this is the𝐻1(Ω) 𝐻1/2(Γ)

lifting you can always have because you have, we are in Hilbert spaces and we have right

inverse.

So now you define . So, this is set of all v in such that v equal𝐾 = 𝑢∼ + 𝐻1
0
(Ω) 𝐻1(Ω)

to g on gamma, or in other words, if you do not, so v minus u tilde is in . And this𝐻1
0
(Ω)

will imply that v, gamma naught v equal to gamma naught g u tilde equal to g. So, v will

be equal to g on the boundary.
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Then is a closed affines subspace of . So, it is closed convex, so implies closed𝐾  𝐻1(Ω)

convex. And we want u belong, we are, look for u belonging to . And we have that𝐾

integral grad u grad v d x equals integral f v for every v in . So, we call this the𝐻1
0
(Ω)

weak formulation.

So as usual, so we arrived at it starting with the solution of the equation, and we can

again check this obviously means, so if you have a weak solution this obviously means

that minus Laplacian u equals f in as before, and since we have u gamma naught u𝐷'(Ω)

equal to g on, implies u equal to g on gamma. So, we have that the weak solution satisfies

the differential equation in the sense of distributions, and of course it satisfies the

boundary condition also. And therefore, this is a called a weak formulation of the

equation.
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Now, what about the existence of the solution for this weak solution? So, for that we look

at u, we write it as w plus u tilde where w belongs to . So, this will imply of course𝐻1(Ω)

that gamma naught of u equals gamma naught of u tilde which is equal to g.

And then if you substitute it in the formulation above, so that will give you grad w, so w

in such that𝐻1
0
(Ω)

for every .
Ω
∫ ∇𝑤∇𝑣 𝑑𝑥 =

Ω
∫ 𝑓𝑣 𝑑𝑥 −

Ω
∫ ∇𝑢∼. ∇𝑣 𝑑𝑥 φ ∈ 𝐻1

0
(Ω)



So now you have completely a problem in . So, we have, which is Hilbert space,𝐻1
0
(Ω)

and of course a u v is equal to integral on omega grad w grad v, which we know, grad u

grad v which we know is an elliptic, symmetric, continuous, bilinear form. It is in fact

just the inner product in by the Poincare inequality. So, now what about the right𝐻1
0
(Ω)

hand side?

So,

.
Ω
∫ 𝑓𝑣 𝑑𝑥

||||

||||
≤ ||𝑓||

0,Ω
||𝑣||

0,Ω
≤ 𝐶||𝑓||

0,Ω
||𝑣||

1,Ω

So, that is, that is fine, and then you have about

.
Ω
∫ ∇𝑢∼ · ∇𝑣 𝑑𝑥 ≤ ||𝑢∼||

1,Ω
 |𝑣|| |

1,Ω
≤ 𝐶||𝑢∼||

1,Ω
 𝑣| |

1,Ω

So, this is less than C times mod f 0 omega mod v 1 omega. And

||𝑢∼|| ≤ 𝐶||𝑔||
1/2,Γ

norm u is less than equal to some C times norm g half gamma mod v 1 omega. So,

therefore, RHS defines a continuous linear functional on H1 0 of omega, and so there

exists a unique w in H1 0 of omega solution by Lax-Milgram. And of course, so this

implies that u can be written as w plus u tilde solution, weak solution of the

inhomogeneous problem. So, that is fine. Now what about uniqueness?
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Now given u tilde, w is unique. That is all we know. But we want to know if there is a

unique solution. Suppose you have two unique, two solutions, two (pos) if possible two

solutions, two weak solutions. So, that means such that gamma naught equals𝑢
1
, 𝑢

2
𝑢

1

gamma naught equals g. And𝑢
2

Ω
∫ ∇(𝑢

1
− 𝑢

2
) · ∇𝑣 𝑑𝑥 = 0,    ∀𝑣 ∈ 𝐻1

0
(Ω)

So, this implies that integral on omega grad minus grad v equal to 0 for every𝑢
1

𝑢
2

. And since gamma naught equals gamma naught , we have gamma𝑣 ∈ 𝐻1
0
(Ω) 𝑢

1
𝑢

2

naught equals gamma naught implies minus itself is in .𝑢
1

𝑢
2

𝑢
1

𝑢
2

𝐻1
0
(Ω)

And therefore, this implies, so if you put as a test function, you get mod𝑣 = 𝑢
1

− 𝑢
2

grad minus square integral on omega equal to 0. That means𝑢
1

𝑢
2

|𝑢
1

− 𝑢
2
|

1,Ω
= 0

and by Poincare’s inequality this implies that . So, the solution is unique. Now𝑢
1

= 𝑢
2

what about the continuous dependence on the data?
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So, u depends continuously on the data. So, we have that

.
Ω
∫ ∇𝑤 · ∇𝑣 𝑑𝑥 =

Ω
∫ 𝑓𝑣 𝑑𝑥 −

Ω
∫ ∇𝑤 · ∇𝑣 𝑑𝑥 ·    ∀𝑣 ∈ 𝐻1

0
(Ω)

Now put 𝑣 = 𝑤.

So, you get

.|𝑤|2
1,Ω

≤ |𝑓|
0,Ω

|𝑤|
0,Ω

+ |𝑢∼|
1,Ω

|𝑤|
1,Ω

≤ (𝐶|𝑓|
0,Ω

+ ||𝑢||
1,Ω

)|𝑤|
1,Ω

And

||𝑢∼||
1,Ω

≤ 𝐶 ||𝑔||
1/2,Γ

.

So, this shows that it is continuously dependent on the data.

.|𝑤|
1,Ω

≤ 𝐶|𝑓|
0,Ω

+ |𝑢∼|
1,Ω

|𝑤|
1,Ω

≤ 𝐶|𝑓|
0,Ω

+ 𝐶 ||𝑔||
1/2,Γ

𝑢 = 𝑤 + 𝑢∼

So, and you have that

||𝑢||
1,Ω

≤ 𝐶(|𝑓|
0,Ω

+  ||𝑔||
1/2,Γ

)



by the Poincare inequality because . ∀𝑤 ∈ 𝐻1
0
(Ω)

So, we use Poincare inequality 1 again, , that is right inverse||𝑢∼||
1,Ω

≤ 𝐶 ||𝑔||
1/2,Γ

we took, and w we have just calculated, so the whole thing is, like, by some constant f 0

omega plus norm g half gamma. So, we have, there exists a unique solution and it is

continuously dependent on data.
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So,

Remark:

Existence and uniqueness of solution plus continuous dependence on data, so this is

called Well-Posed problem in the sense of Hadamard. So, Well-Posed problem means it

will have a solution, solution will be unique and the solution will depend continuously on

the data. These are the three characteristics of a Well-Posed problem.

So, the Dirichlet problem, homogeneous, there is no, that straightforward we have

already seen in the abstract setting, that the mapping g which maps the solution to the, f

to the solution is the continuous operator. And therefore the, in the, the homogeneous

case we had no difficulty and in the inhomogeneous case we have shown that there exists

a unique solution which depends continuously on the data. So, our next thing is to look at



other second order elliptic operators which are not necessarily the Laplacian. So, we want

to know what is the situation in those cases.


