Sobolev Spaces and Partial Differential Equations
Professor S Kesavan
Department of Mathematics
The Institute of Mathematical Sciences, Chennai
Lecture 9
Weak Solutions of Elliptic Boundary Value Problems - Part 1
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We were looking at a lot of abstract variational problems. Now we will see several
examples of applications of the general result, especially the Lax-Milgram lemma. So,

examples of boundary value problems.

So, we first look at the Dirichlet problem for second-order elliptic equation, operators.

So, throughout, whether I say (1 c R" is a bounded domain and T' = 9. So, this is the

thing.
So, we consider the problem
— Au=finQ
u=0onTl

So, this is a problem, A is a Laplacian and f is some given data. So, in the domain it

should satisfy this differential equation, and on the boundary, it should vanish. So,

f:Q- R" given function.



So classical solution means u € Cz(ﬁ), u =0onTl, and (omega) f € C (ﬁ), and
— Au = f inQ point wise in omega. So, this is what we would look at, a classical

solution.

So, if u is a classical solution let us multiply this by a C infinity function with compact

support. So, let @ € D(Q). So, you have

~ J(awe dx = [ fodx
Q Q

So now let us use Green's theorem. So, you get

[Vvuve dx = [ fo dx
Q Q

Then there is no boundary term because ¢ € D(L1) and therefore there will be no

boundary term equals | f¢ dx. So, this is what we get when we satisfy this.
Q

(Refer Slide Time: 03:12)

We R) wme an b = veHlliy).

Fecly DL
D) Rune s W), L okl (uily M”Q”““;W
2 oy v v penioy
Weak Lunvdation. Pind wedlny nh. Huenin)

S QYo 2o = \H‘ré«




So then, so, so u € Cz(ﬁ), f is in, so therefore the, implies that, and u = 0 on T, and
therefore this implies that u belongs to H ! 0(Q). And then f € C (5) . And therefore,
this implies that f € L*(Q).

So now if you look at star, by, since D({) dense in H 10(9), by continuity and density, we
have star valid for all v, @ € H 10(9), not just, because of the density. This we call as the
weak formulation. So, we have weak formulation. Find u € H 10(9) such that for every

v E Hlo(ﬂ) we have

[VuVvdx = [ fvdxforeveryv € Hlo(Q).
Q Q

So, there is nothing about the second derivative in, even though the given differential
equation is a, is called the is a second order differential equation, namely, the its, for the

Laplace operator, this equation does not involve anything about second derivatives.

We are looking at a function on which the vector space involves only function and its first

distribution derivatives. And the formulation here also, the equation which we have
: 1 . o .
written for every v € H O(Q) does not involve any second derivatives at all. So, that is

why we call this a weak formulation. So, we (as) we say that this is a solution, a weak

solution of the original equation.
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So let us, first let us dispose of the question of existence. So, existence of weak solution.
So, Hlo(ﬂ) is a Hilbert space. f v going to [ fv dx. So,
Q

[ fvadx

< [I1fll, Il
) P

and by Poincare’s inequality this is
<
< ClIfll, oIl

And therefore, this is a continuous linear functional on this thing.

And you have that a of u v equals integral grad u grad v on omega, so mod a u v is less
than equal to mod u 1 omega mod v 1 omega and you have that a v, v equals integral mod

grad v square and that is of course mod v square 1 omega, which is a norm on, so mod 1

1 . . , .
omega norm, on H O(Q), because omega is bounded and we have Poincare’s inequality.

So, we have the solution. So, by Lax-Milgram, so we have a continuous, symmetric and
elliptic, bilinear form, and a linear functional on the other side, therefore by
Lax-Milgram there exists a unique u satisfying double star. So, there exists a unique

solution.
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Further, because by the symmetry of the bilinear form we have that u equals,

J(u) equals minimum over all v in H 10(9), of J(v) where

Jw) ==[|v|" dx — [ fvdx.
Q Q

So, this is the thing.

Now

Remark. We can also have f € H _1(9). And then instead of integral f v omega
this will be replaced by the duality bracket f in ' (). So, the ins, that is the only

change, otherwise this will have a solution. So, we have the following, we have proved

the following theorem.
Theorem:
Q1 bounded open set [ = 9Q, f in LZ(Q), then there exists a unique weak solution

u€H 10(9). Further, u minimizes J over H 10(9). So, this is the theorem. So, now let us

see how the weak solution is connected to the original equation.



Proof:

So, suppose we have, so we have
[VuVedx = [ fedx, Yo € D(Q),
Q Q

for instance. But this tells you that minus Laplacian u acting on phi equals f phi as

distributions and therefore this implies that minus Laplacian u equals f in D (). So, the
weak solution is connected to the original differential equation. Namely, it satisfies the

same, (eq) differential equation in the sense of distributions.



(Refer Slide Time: 10:20)

weadt 2R \Aé-@ﬂln), Foter o wondden T sww B,

Jouvg = (19 *2edm)

e
{=Du ) =487 = —bduzf wn Do)

Apw. Yok wEBED AR ), T LELE). be Wl

D, £ €2,
DO dang  se 12OV

= he=f Loy

Now, so assume now, u belongs to H 10(9) intersection C (ﬁ). Then f will belong to ¢ of

omega bar and minus Laplacian u f belong to L2 of omega because it is in H u, is in H 2,
and also u € H’ (©2). And therefore, you have, and they are equal as functions and D((2)

is dense in LZ(Q). This implies that minus Laplacian u equals f in LZ(Q). That means
minus Laplacian u equals f almost everywhere but they are continuous functions, and so

minus Laplacian u equals f. Further, u restricted to gamma equal to 0.
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So therefore, you have that, it is a classical solution. Therefore, weak solution plus
smoothness implies classical solution. So, the question is, when do you have the
smoothness. So, this is guaranteed by means of what is called a regularity theorem. So,
we have to prove it each time. So, for given any problem you have a weak solution, weak
formulation, you have weak solution, then by some other technique you have to show that

it is a regularity theorem.

Now for the record, we will say, for instance, that if omega is a smooth domain, how

smooth I am not specifying, let us say reasonably smooth, then, and u is in H 10(9) weak

solution, f in L*(0), this will imply that u belongs to H'(Q) N H' (). If u belongs to

f € Hm(ﬂ), this will imply that u belongs to Hm+2(Q)ﬂ H 10(9). These are examples of

regularity theorems for the Laplace operator with reasonably smooth domains.

And therefore, if you, m is large enough then of course with the Sobolev embedding
theorems you can deduce the u is differentiable, so, as many times as you want, and then
you can deduce that it is a classical solution. So, this is how we go. So, the regularity

theorem needs to be proved. It is, it is not an obvious thing. And that is a different story.
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Inhomogeneous Dirichlet problem:

So now let us look at the inhomogeneous Dirichlet problem. Dirichlet problem means
you are prescribing the value of the function on the boundary. This is called a Dirichlet
problem. And therefore, homogenecous means u equal to 0 on the boundary,

inhomogeneous means you have some other function.
So, f:Q - R, g: Q — R given, and we want to look at the problem
— Au=finQ
u=gonl.
So, this is called a inhomogeneous Dirichlet problem.

So as usual if you multiply by ¢ € D({2), you get
[ VuVe dx = [ fo dx for every @ € D(Q),
Q Q

because again we used integration by parts and there was no boundary term because phi
is 0 on the boundary. So, we are trying to look for, so we look for u in H 10(9) so that

these integrals make sense.



And this will imply of course that gamma naught u will have to belong to H 1/2(1*). That

is the Trace theorem which we have proved. So, therefore, we assume, so assume g

belongs to H 1z (['). Only then we can try to make sense of the weak solution.
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So now let, so you have, what you have, from H 1(Q) gamma naught to H Y 2(F), this is a
continuous and onto. So, when you have onto from a Hilbert space then always you know
that there exists a right inverse. So, there exists a right inverse from H Y 2(F) to H 1(Q).

1
That is, given g in H 1/Z(F) there existsau € H (1), and that is right inverse that means

u tilde, gamma naught of u tilde equals g such that, and further, you can say norm of u

tilde in H 1(Q) will be less than equal to some C times norm g in H 1/2(1"). So, this is the
lifting you can always have because you have, we are in Hilbert spaces and we have right

inverse.
So now you define K =u + H ! 0(Q). So, this is set of all vin H 1(Q) such that v equal

to g on gamma, or in other words, if you do not, so v minus u tilde is in H O(Q). And this

will imply that v, gamma naught v equal to gamma naught g u tilde equal to g. So, v will

be equal to g on the boundary.
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Then K is a closed affines subspace of H 1(Q). So, it is closed convex, so implies closed

convex. And we want u belong, we are, look for u belonging to K. And we have that
integral grad u grad v d x equals integral f v for every v in H 10(9). So, we call this the
weak formulation.

So as usual, so we arrived at it starting with the solution of the equation, and we can

again check this obviously means, so if you have a weak solution this obviously means

that minus Laplacian u equals f in D'(Q) as before, and since we have u gamma naught u
equal to g on, implies u equal to g on gamma. So, we have that the weak solution satisfies
the differential equation in the sense of distributions, and of course it satisfies the
boundary condition also. And therefore, this is a called a weak formulation of the

equation.
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Now, what about the existence of the solution for this weak solution? So, for that we look

at u, we write it as w plus u tilde where w belongs to H 1(Q). So, this will imply of course

that gamma naught of u equals gamma naught of u tilde which is equal to g.

And then if you substitute it in the formulation above, so that will give you grad w, so w

in H 10(9) such that

[VvwVvdx = [ fvdx — [ Vu . Vv dx for every ¢ € Hlo(ﬂ).
Q Q Q



So now you have completely a problem in H IO(Q). So, we have, which is Hilbert space,

and of course a u v is equal to integral on omega grad w grad v, which we know, grad u

grad v which we know is an elliptic, symmetric, continuous, bilinear form. It is in fact
just the inner product in H O(Q) by the Poincare inequality. So, now what about the right
hand side?

So,

< Ifll,lIvll, o < CIAI Il

[ fvdx
)

So, that 18, that 1S fine, and then you have about

. . .
SV Wodx < (1], g 191l < Ul g ol

So, this is less than C times mod f 0 omega mod v 1 omega. And

Il < Cligll,

norm u is less than equal to some C times norm g half gamma mod v 1 omega. So,
therefore, RHS defines a continuous linear functional on H1 0 of omega, and so there
exists a unique w in HI 0 of omega solution by Lax-Milgram. And of course, so this
implies that u can be written as w plus u tilde solution, weak solution of the

inhomogeneous problem. So, that is fine. Now what about uniqueness?
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Now given u tilde, w is unique. That is all we know. But we want to know if there is a
unique solution. Suppose you have two unique, two solutions, two (pos) if possible two

solutions, two weak solutions. So, that means u,u, such that gamma naught u, equals

gamma naught u ) equals g. And

fV(u1 — uz) -Vvdx =0, Vv € HIO(Q)
Q

So, this implies that integral on omega grad u, minus u, grad v equal to 0 for every
veEH 10(9). And since gamma naught u, equals gamma naught u,, we have gamma
naught u, equals gamma naught u, implies u, minus u, itself'is in H 10(9).

And therefore, this implies, so if you put v = U, —u,asatest function, you get mod

grad u L minus u , square integral on omega equal to 0. That means

lu, —u | =0
1 2'1,0

and by Poincare’s inequality this implies that u L= U, So, the solution is unique. Now
what about the continuous dependence on the data?

(Refer Slide Time: 24:40)
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So, u depends continuously on the data. So, we have that

[vw - Vvdx = [ fvdx — [Vw - Vvdx - Vv EHlo(Q).

Q Q Q
Now putv = w.
So, you get

2 ~

Wl o = flgaWlyg + 1w 1 glwl o = (CUfl + Tl JIwl -
And

1l < C Hlgll,
So, this shows that it is continuously dependent on the data.

Wl o= Clflgq + lu gl o = Clfly, + Cliglly , -

u=w+u
So, and you have that

el < CAUflyq + gl )



by the Poincare inequality because Yw € H 10(9).

So, we use Poincare inequality 1 again, ||u || qSC [ g||1 Jore that is right inverse

we took, and w we have just calculated, so the whole thing is, like, by some constant f 0
omega plus norm g half gamma. So, we have, there exists a unique solution and it is

continuously dependent on data.
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So,
Remark:

Existence and uniqueness of solution plus continuous dependence on data, so this is
called Well-Posed problem in the sense of Hadamard. So, Well-Posed problem means it
will have a solution, solution will be unique and the solution will depend continuously on

the data. These are the three characteristics of a Well-Posed problem.

So, the Dirichlet problem, homogeneous, there is no, that straightforward we have
already seen in the abstract setting, that the mapping g which maps the solution to the, f
to the solution is the continuous operator. And therefore the, in the, the homogeneous
case we had no difficulty and in the inhomogeneous case we have shown that there exists

a unique solution which depends continuously on the data. So, our next thing is to look at



other second order elliptic operators which are not necessarily the Laplacian. So, we want

to know what is the situation in those cases.



