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So, we just saw a theorem where if you had a symmetric continuous elliptic bi-linear

form then the energy functional could be minimized over𝐽(𝑣) = 1
2 𝑎(𝑣, 𝑣) −< 𝑓, 𝑣 >

K non-empty closed convex set, and the minimizer satisfies

𝑎(𝑢, 𝑣 − 𝑢) ≥  < 𝑓, 𝑣 − 𝑢 >,     𝑣 ∈ 𝐾.

So, a is continuous symmetric elliptic.𝐻

So, we will now try to get rid of the symmetry hypothesis. So, that is not needed. But

then of course, the price we pay is we will not get this variational characterization, as we

call it. We will only get a solution to these inequalities, which is itself a useful thing to

have.

So, so this is the theorem of Stampacchia. So,

Theorem(Stampacchia):



let be a real Hilbert space and let a non-empty closed convex set. Let𝐻 𝐾 ⊂ 𝐻

be a continuous and elliptic bi-linear form. Let f belong to . Then𝑎: 𝐻 × 𝐻 → ℝ 𝐻 𝐻

there exists a unique such that for every you have𝑢 ∈ 𝐾 𝑢 ∈ 𝐾

.𝑎(𝑢, 𝑣 − 𝑢) ≥< 𝑓, 𝑣 − 𝑢 >

Proof:

So, this is the theorem. So, we do not need the symmetry but the price we pay is that this

is not the solution to some minimization of energy.

So let be fixed. And then is a continuous linear functional. So, by𝑤 ∈ 𝐻 𝑣: →   𝑎(𝑤, 𝑣)

Riesz, there exists such that for every v in H. So, this is𝐴𝑤 ∈ 𝐻 𝑎(𝐴𝑤, 𝑣) = 𝑎(𝑤, 𝑣)

the thing.
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So, by the bi-linearity, so by, so bilinear, bi-linearity implies A is linear. Continuity

implies norm of A w is less than equal to M times norm w. And also, you have

< 𝐴𝑤, 𝑤 >   >   α||𝑤||2

So, we get these properties immediately from the continuity and by, so ellipticity.



So, A is a bounded linear operator, so , that is, it is a bounded linear operator𝐴 ∈ 𝐿(𝐻)

on H. So, now we can write

𝑎(𝑢, 𝑣 − 𝑢) ≥< 𝑓, 𝑣 − 𝑢 >  ⇔  < 𝐴𝑢, 𝑣 − 𝑢 >  ≥  < 𝑓, 𝑣 − 𝑢 >,   ∀𝑣 ∈ 𝐾

So, we can write this equivalently as saying, so

let to be chosen. So, this is same as saying thatρ > 0

< ρ𝑓 − ρ𝐴𝑣 + 𝑣 − 𝑢,   𝑣 − 𝑢 >  ≥ 0  ,   ∀𝑣 ∈ 𝐾.

But this resembles something which we know. So, you have something here minus u v

minus u less than equal to for every, less than equal to 0 for every v in . That is, we𝐾

have that the

𝑃
𝐾

(ρ𝑓 − ρ𝐴𝑣 + 𝑢) = 𝑢

So, we are thus looking for a fixed point of f from to where f of v is given by𝐻 𝐻

projection to the of rho f minus rho A u plus u. So, and obviously the projection,𝐾

because it is a projection on , it means the range is in so any fixed point is going to be𝐾 𝐾

in itself.𝐾

(Refer Slide Time: 06:22)



So now let v and w, so when you, the first fixed point theorem which we like to see

whether we can apply is a contraction mapping theorem. So, we are trying to see if we

can apply like that. So, norm of F v minus F w, so is of rho F minus rho A u plus v,𝑃
𝐾

rho A v plus v minus of, so norm of of rho F minus rho A v plus v minus of rho𝑃
𝐾

𝑃
𝐾

𝑃
𝐾

F minus rho A v plus w plus w.

But the norm of of u 1 minus u 2 is less than equal to norm u 1 minus u 2. So, when𝑃
𝐾

we take the difference you get, these get subtracted out and therefore you will get that

norm of v minus w minus rho minus w. So, the norm of F v minus F w square is less𝐴𝑣

than the equal norm of v minus w square minus 2 rho minus w v minus w plus rho𝐴𝑣

square norm of minus w square.𝐴𝑣

So now that is less than or equal to, I am going to write everything in terms of norm v

minus w square. So, this will give me 1. The last one, norm of of anything is less than𝐴

M times that vector and therefore you have that plus rho square M square into norm v

minus w square.

Now rho of w v minus w is greater than equal to alpha times v minus w square. And𝐴𝑣 

therefore, from that, since we are having a minus sign here, minus 2 rho alpha times norm

v. So, you can now choose 0 less than rho less than 2 alpha by M square.



And so this part will become negative and therefore you have 1 minus 2 rho alpha plus

rho square M square will be strictly less than 1. And therefore, F is a contraction, implies

there exists a unique fixed point u in K. And that is a point which we are looking for. And

that completes the proof of the theorem.
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So, if equals v, a closed subspace of , then obviously convex non-empty, anyway it is𝐾 𝐻

not empty because 0 is always there. So, it is closed, so I do not have to say that, yeah,

closed subset, so obviously convex, and non-empty. So, if then w plus u also𝑤 ∈ 𝑉

belongs to . So, you can, you can substitute that.𝑉

So a u, v minus u is greater than equal to f of minus u and that will give you a u w, so𝑉

call this as , and therefore a u w greatly equal than f of w. Also true for minus w.𝑉

Therefore, from this you get a of u w equals f of w for every w in .𝑉

Also, alpha times norm u square equals a of u u equals f u less than equal to norm f times

norm u, and therefore norm u is less than equal to 1 over alpha times norm f. And

therefore, the mapping, u going to, sorry, f going to u is a bounded linear operator to .𝐻 𝑉

So, we have actually proved, so thus we have proved.

So, this, this implies, so let, call me, let us call this double star, double star implies that f

going to u is linear because of the bi-linearity of A and the inner product. So, this implies

that this is linear and therefore you have this bounded linear operator. Thus, we have

proved the following theorem. So, this is a very important theorem which we will use

again and again.

So, this is called the



Lax-Milgram Lemma.

Hilbert, real Hilbert space, closed subspace, a continuous and elliptic𝐻 𝑉 ⊂ 𝐻 𝐻

bi-linear form, , then there exists a unique such that𝑓 ∈ 𝐻 𝑢 ∈ 𝑉

𝑎(𝑢,  𝑤) =  <  𝑓,   𝑤 >,    ∀𝑤 ∈ 𝑉.

In particular this is true if itself. And the map which takes is a bounded𝑉 = 𝐻 𝐺 𝐺𝑓 = 𝑢

linear map of into and norm . In addition, if is symmetric then u is𝐻 𝑉 ||𝐺𝑓|| = 1
α ||𝑓|| 𝑎

the minimizer over of the functional𝑉

𝐽𝑣 = 1
2 𝑎(𝑣,  𝑣) −< 𝑓,  𝑣 >.

So, this is the Lax-Milgram Theorem.
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Remarks. 1,

You take .𝑎(𝑢, 𝑣) =< 𝑢, 𝑣 >

So, so if you have V contained in H close subspace, so

< 𝐺𝑓,  𝑣 >=< 𝑓,  𝑣 >,   ∀𝑣 ∈ 𝑉

And this is called, is the orthogonal projection.𝐺: 𝐻 → 𝑉



Remark. 2,

so let us take and then you are saying that a continuous elliptic implies there𝑉 = 𝐻

exists a unique such that𝑢 ∈ 𝐻

𝑎(𝑢, 𝑣) =< 𝑓, 𝑣 >,   ∀𝑣 ∈ 𝐻

in any case, and f, f in H given. So, this is the infinite dimension, dimensional analog of

the fact that any positive definite matrix is invertible. Because in finite dimensions onto

equals 1 1 and so you have a unique solution. So, this is, it tells you that the matrix is

invertible. Here you are saying that, so the A u equal to f is the linear system. So, that is

the same as saying . So, the this is how you relate the two.𝑎(𝑢, 𝑣) =< 𝑓, 𝑣 >,   ∀𝑣 ∈ 𝐻
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Remark. 3,

By Riesz representation theorem we can replace , in all the theorems by< 𝑓,  𝑣 >

, the duality product . That is, a continuous linear< 𝑓,  𝑣>
𝐻*,𝐻

 𝐻*  𝑎𝑛𝑑 𝐻,   𝑤ℎ𝑒𝑟𝑒 𝑓 ∈ 𝐻*

functional on H.

Why I am saying this is that we may not, as I, we studied in the Sobolev spaces, we have

various Sobolev of spaces which we are dealing with, and we always said we will only



identify with its dual but will keep the duals of as and so on. So, we will not,𝐿2 𝐻1
0

𝐻−1

we will not always have that f v, but we will have in fact the duality bracket. Namely, f is

in the, if f is a continuous linear function in fact.

Remark. 4,

By the Riesz representation theorem, this can be written as inner product for< 𝑓∼, 𝑣 >

some . So, we does not matter what we are doing this. For a symmetric implies, so𝑓∼

solution u is a minimizer of J. But in the general case you do not have the, that does not

exist energy that, does not exist J, which is minimized.

But 𝑎(𝑢,  𝑣 − 𝑢) ≥< 𝑓,  𝑣 − 𝑢 >   ,  𝑣 ∈ 𝐾

this is called variational inequality. So, this is an example of what we call a variational

inequality. So, our next aim is to see several examples of this situation, and then connect

it with various boundary value problems.


