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We will now start a new chapter. This is Weak Solutions of Elliptic Boundary Value

Problems. Most partial differential equations which come in engineering or physics arise

out of what are called variational principles. So you must have heard of expressions in

physics like the principle of least work. So there is an energy associated with any system

and in order that you have equilibrium this energy has to be minimized.

So, when we do this minimization of energy, there is a functional which we write down in

some Hilbert space, for instance, and then when we try to minimize it. So if for instance

in finite dimensions if you are given F, minimize the function F of x then you first do the

first derivative equal to 0. Now corresponding to this you have what is called the first

variation or the vanishing of the first Frechet derivative of the functional.

That will give you an equation called the Euler-Lagrange equations which will be, which

will turn out to be the differential equation we started with. So many differential



equations which we come across arise in this way. So they come as the Euler-Lagrange

equations of the minimization of some energy functional.

So, we will see several examples of this in the days to come, but first we will see a set of

abstract variational problems and then most of these, all these problems which we look at

will fit into this abstract framework.

So, so Abstract Variational Problems. So one of the classical variational problems is to

given a Hilbert space, and a vector in it, and a closed convex set, find a point which is

closest to it in the convex set. For instance, if you have a point and a line in the plane then

you know that the closest point is the foot of the perpendicular which you draw.

So, in the same way given a closed convex set in the Hilbert space we show that there is a

point always and there is only one point which is closest to it in this. So we have the

following theorem. So this is one of the first theorems we proved in Hilbert space theory.

Theorem:

Let be a real Hilbert space whose norm and inner product are denoted respectively. Let𝐻

be a non-empty closed convex subset. Let . Then there exists a unique𝐾 ⊂ 𝐻 𝑥 ∈ 𝐻

such that𝑦 ∈ 𝐾 ||𝑥 − 𝑦|| = 𝐼𝑛𝑓
𝑧∈𝐾

||𝑥 − 𝑧||

So in, actually it is, since it is, you write inf, but then since it is actually realized we write

minimum. Further, y can be characterized as the unique vector in K such that we∀𝑧 ∈ 𝐾

have, . So this is the theorem. < 𝑥 − 𝑦,  𝑦 − 𝑧 >≤ 0
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Proof. So let us take , which is strictly positive if x is not in𝑑 = 𝐼𝑛𝑓
𝑧∈𝐾

||𝑥 − 𝑧||

K. If x is in K then there is nothing to do because you have x itself is the unique point and

the distance is 0, and therefore you have, you do not have anything to worry about. So let

us take which is this, so x is not in K.

So, then you take a minimizing sequence, namely

that is .𝑦
𝑛

∈ 𝐾 ||𝑥 − 𝑦
𝑛
|| → 𝑑

So you can always do that. Because you have an infimum you can always take this out.

So this implies, since d is a positive real number, , so this implies that||𝑥 − 𝑦
𝑛
|| → 𝑑

is bounded.{𝑦
𝑛
}

H is a Hilbert space so it is reflexive, so implies there exists a weakly convergent

subsequence . But K is closed convex and this implies by the Hahn-Banach theorem,{𝑦
𝑛

𝐾

}

K is weakly closed. That is, it is closed in the weak topology. So this, since x n, so {𝑦
𝑛
}

in K converges to y weakly in H .⇒ 𝑦 ∈ 𝐾

Also, the norm is weakly lower semi-continuous. So that means, that is,

||𝑥 − 𝑦 || ≤ 𝑙𝑖𝑚 𝑖𝑛𝑓 ||𝑥 − 𝑦
𝑛
||



So this is the, one of the definitions of weak lower semi-continuity, namely if {𝑦
𝑛
}

converges to y weakly then the norm of x minus y is less than equal to lim inf of this. But

then y belongs to K, therefore

𝑑 ≤ ||𝑥 − 𝑦 || ≤ 𝑙𝑖𝑚 𝑖𝑛𝑓 ||𝑥 − 𝑦
𝑛
|| ≤ 𝑑

But that is equal to d because , and therefore this equal to d, and{||𝑦
𝑛

− 𝑥||} → 𝑑

therefore this implies that . Therefore, we have established the existence||𝑥 − 𝑦 || = 𝑑

of a closest point.
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Now you, if you have two such points, so if y and satisfy norm of x minus y equals𝑦'

norm of equal to d, y not equal to , in K, then what happens is you take norm𝑥 − 𝑦' 𝑦' 𝑦'

of y plus by 2 minus x is less than or equal to, is equal to one half of norm of y minus x𝑦'

square plus one half of norm of minus x squared minus norm of y minus by 2 whole𝑦' 𝑦'

squares. So this is nothing but the parallelogram law, parallelogram identity.



Now this is d, this is d. So norm of by 2 minus x is strictly less than whole, sorry,𝑦 + 𝑦'

square, square is less than equal to d square since this y minus is not 0, and therefore𝑦'

you have that norm of is strictly less than d, but by 2 belongs to K since it𝑦 + 𝑦' 𝑦 + 𝑦'

is convex, and that is a contradiction because you have an element which is less than d

from x in K. But that is not possible because d is in fact the infimum.

Therefore, you have that, so this implies that . So we have a unique solution. So𝑦 + 𝑦'

now we will show that this can be characterized. Namely, if you have a minimum point,

the point which is closest then it will satisfy the inequality which is given here. Let me

call this star. So we have to show the star is also equivalent to saying the norm of x minus

y is the minimum of norm of x minus z.
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So let . And, so then you have𝑧 ∈ 𝐾

for , we have by the convexity of K that .0 < 𝑡 < 1 𝑡𝑧 + (1 − 𝑡)𝑦 ∈ 𝐾

Again, we are using the convexity, K convex. So then

||𝑥 − 𝑦|| ≤ ||𝑥 − 𝑡𝑧 + (1 − 𝑡)𝑦|| = ||𝑥 + 𝑦 + 𝑡(− 𝑧 − 𝑦)||

So now you develop this.

So, the norm of x minus y square is less than equal to, if you take the square you have

norm of x minus y squared plus t square norm z minus y squared minus 2 t x minus y z

minus y. So these two cancel out, you bring the other thing to this side, so you have x

minus y, z minus y is less than equal to t by 2 times norm z minus y square. And now you

let it go to 0, so you get a star. Namely x minus y minus y less than equal to 0.

Conversely, if star is true let z belong to K. Then you have norm of x minus y square

equals norm of x minus z plus z minus y square, which is equal to x minus z squared plus

x minus y square plus 2 times x minus z, z minus y, which is equal to norm of x minus z

squared plus norm of z minus y square plus 2 times, now I am going to add and subtract a

y in this term.

So, you have 2 times x minus y, z minus y. And then y minus z, z minus y is minus 2

times y minus z square. So this will cancel with this. And therefore, you now have, this is



less than equal to 0 is given, this is anyway less than 0. And therefore, the norm of x

minus y is less than equal to the norm of x minus z for all z in K. That is, x minus y

equals minimum norm of x minus z, z in K. So this characterizes it completely. So this

proves the theorem.
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So, remark. So as I already said if you are in the plane and you have a point and a straight

line because it is a closed convex set, then, so if this is x, this will be y where you have

the foot of the perpendicular is the thing. More generally if you have a closed convex set

K, and you have a point here, so the, so this point y will be the foot of the perpendicular

to the tangent at y. And then if you take any z you have this angle.

So, you have x minus y, z minus y less than or equal to 0, that is, theta will be obtuse. So

the angle theta is always obtuse. So that is, there is a unique point which for which, it

could be a right angle also, but it, and that is the geometric interpretation of this, this

particular result.



(Refer Slide Time: 14:50)

So, notation. So we will write P K x, the projection onto K, as, so this is the thing. Now,

this is, so projection of x onto K. So now,

Corollary.

You have that x, real Hilbert non-empty closed convex set. Then, if ,𝐻 𝐾 𝑥, 𝑦 ∈ 𝐻

remember this is not linear, the projection is non-linear mapping so you have

||𝑃
𝑘
𝑥

1
− 𝑃

𝐾
𝑥

2
|| ≤ ||𝑥

1
− 𝑥

2
||

So this is nice, it is a non-expansive mapping.

Proof. You have that, from the characterization in terms of the inner product, you

have . So is , . Similarly, minus ,𝑃
𝑘
𝑥

1
, 𝑃

𝐾
𝑥

2
∈ 𝐾 𝑥

1
𝑃

𝐾
||𝑥

1
− 𝑃

𝐾
𝑥

1
|| ≤ 0 𝑥

2
𝑃

𝐾
𝑥

2

is less than equal to 0.𝑃
𝐾

𝑥
1

− 𝑃
𝐾

𝑥
2

So let us add these two. So I want to get same, in here also. So I will put a𝑃
𝐾

𝑥
2

− 𝑃
𝐾

𝑥
2

minus sign here and transfer it 1ere. So I will write this. So this, this is same as saying

.< 𝑃
𝐾

𝑥
2

− 𝑥
2
, 𝑃

𝐾
𝑥

2
− 𝑃

𝐾
𝑥

1
>≤ 0



So this is the same as this. I have just put a minus sign in each of the things. So now let us

add these two things. So you get

.< 𝑥
1

− 𝑥
2

− 𝑃
𝐾

𝑥
1

− 𝑃
𝐾

𝑥
2
, 𝑃

𝐾
𝑥

2
− 𝑃

𝐾
𝑥

1
>≤ 0

So we are just adding.
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So, from this you get a norm of square is less than equal to, by the𝑃
𝐾

𝑥
2

− 𝑃
𝐾

𝑥
1

Cauchy-Schwarz inequality, norm of . Cancel one of them< 𝑥
1

− 𝑥
2

− 𝑃
𝐾

𝑥
1

− 𝑃
𝐾

𝑥
2

and then you get the result for the thing.

So, so H, so definition. Real Hilbert space and a bilinear form. That means it is linear in

each of the variables. So it is said to be continuous if there exists an M such that mod a u

v is less than equal to m times norm u norm v for all u, v in H.

It is said to be elliptical. And if you want to say, specify the vector space which you are

talking about then you say H is elliptic if a v, v, if there exists an alpha positive such that

a v, v is greater than equal to alpha times norm v square for every v in H. So then you say

that it is elliptic. It is said to be symmetric, a u v equals a v, u for all u, v in H.
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So, if you want, so if you take , for example, and you have A to be equal to𝐻 = ℝ𝑁

, then you have a𝐴 = (𝑎
𝑖𝑗

)
𝑁×𝑁

< 𝑢, 𝑣 >=
𝑖,𝑗=1

𝑁

∑ 𝑎
𝑖𝑗

𝑢
𝑖
𝑣

𝑗

So this is nothing but v transpose a u. So u is the u 1 to u n, and v equals , and v𝑣
1 

𝑡𝑜 𝑣
𝑛

transpose is the transpose. So a u, v, sorry. So this is a bilinear form and it is always

continuous, because in finite dimensional space everything, anything linear is in fact

continuous.

Now, if A is symmetric implies A will be symmetric. If A is positive definite, then you

have A will be H elliptic. And we have A v, v equals v transpose A v, which is A v, v, of

course, will be in alpha times norm v square where alpha is the smallest eigenvalue of A.

So this is just linear algebra. So if it is positive definite then all the eigenvalues will be

positive and therefore you have. So this is a typical example of the thing.
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So now we will come across several examples of elliptic bi-linear forms in the future. So

now we have a

Theorem.

Let be a real Hilbert space and, a to R symmetric continuous elliptic𝐻 𝐻 × 𝐻 𝐻

bi-linear form. Let be a non-empty closed convex set. Let . Then there𝐾 ⊂ 𝐻 𝑓 ∈ 𝐻

exists a unique such that𝑢 ∈ 𝐾

𝑎(𝑢, 𝑣 − 𝑢) ≥< 𝑓, 𝑣 − 𝑢 >   ∀𝑣 ∈ 𝐾

Further, u is the unique minimizer over K of the functional

𝐽(𝑣) = 1
2 𝑎(𝑢, 𝑣) −< 𝑓, 𝑣 >

and then you will get that the minimizer will be characterized by this set of inequalities

which is true, which are true for every .∀𝑣 ∈ 𝐾
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Proof. So you define a new inner product .< 𝑢, 𝑣 >= 𝑎 < 𝑢, 𝑣 >

Then by continuity, symmetry and ellipticity defines an inner product on . Also, we𝐻

have that .. So then you have norm v of a is greater than equal to||𝑣||2 = 𝑎 < 𝑣, 𝑣 >

alpha norm v square, that is, ellipticity. And by continuity this is M times norm v square.

So this implies the new norm is equivalent to the original norm. So the space does not

change.

So then, if f belongs to H then v going to f v is a continuous linear functional for both

norms. So by Riesz representation theorem there exists f tilde in H such that f v equals f

tilde v equals a of f tilde v. So we can find such a thing. So now you consider one half of

the norm of v minus f tilde in the norm square.

1
2 ||𝑣 − 𝑓∼|| = 1

2 𝑎(𝑣 − 𝑓∼, 𝑣 − 𝑓∼) = 1
2 𝑎(𝑣, 𝑣) − 𝑎(𝑓∼, 𝑣) + 1

2 𝑎(𝑓∼, 𝑓∼)

1
2 𝑎(𝑣, 𝑣) −< 𝑓 , 𝑣 >+ 1

2 𝑎(𝑓∼, 𝑓∼) = 𝐽(𝑣) + 1
2 𝑎(𝑓∼, 𝑓∼)

is fixed , is same as𝑓∼ 𝑀𝑖𝑛
𝑣∈

 𝐽(𝑣) 𝑀𝑖𝑛
𝑣∈𝐾

||𝑓∼ − 𝑣||



And you know we have already shown that, so implies there exists a unique 𝑢 ∈ 𝐾

such that 𝐽(𝑣) ≤ 𝑀𝑖𝑛
𝑣∈𝐾

𝐽(𝑣)

because it is from the minimum distance theorem.
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And then we know that by the characterization, so this is nothing but

< 𝑓∼ − 𝑢, 𝑣 − 𝑢 >≤ 0,   𝑣 ∈ 𝐾

⇒ 𝑎(𝑓∼ − 𝑢, 𝑣 − 𝑢) ≤ 0

⇒ 𝑎(𝑣, 𝑣 − 𝑢) ≥ 𝑎(𝑓∼, 𝑣 − 𝑢) = (𝑓, 𝑣 − 𝑢),     𝑣 ∈ 𝐾

And therefore, you have that this characterizes the solution of the, the minimizing

property of K.

So, we will now see that we can actually relax this condition on the symmetry. The

symmetry is not really needed. We needed it if you want to interpret it as the solution of a

minimization problem. But still this inequality will always have a solution. So that is the

next theorem which we are going to show. We will see that in a moment.


