Sobolev Spaces and Partial Differential Equations
Professor S Kesavan
Department of Mathematics
The Institute of Mathematical Sciences, Chennai

Lecture 4
Trace Theory Part 4
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So, now let Q) c ]RN be an open set of class C 1. So, then what do you have? This is (), it
has bounded boundary, and for any point on the boundary you have this is Q plus, this is

Q 0 and this whole cube is called Q and you have a map which, which takes you Tj which
goes to this, the boundary goes to this Tj, and Tj and Tj inverse are all C' maps.
And these are, so you can cover so U,- , T associated cover of 0. Let us call that as

J

gamma. And then psi j, so j equals 1 to k, associated partition of unity. So, if u belongs to

H1 of omega then psi j u, psi j of u restricted to U,- intersection omega composed with T],
and then extended by 0 outside the cube will belong to H 1\(]RNJr).

And so, we can define its trace, so gamma naught of, can be defined, so is, so trace on

N—-1 . . . .
R can be defined, and go back to gamma intersection Uj by Tj inverse. So, this



defines the trace on Uj intersection gamma and again use the partition of unity and piece

together gamma trace on Tj, sorry, gamma intersection Uj, j <1 < k, to get trace on

gamma.

And we can have range of gamma naught, so we will get in fact gamma naught from H !
of omega to L? of gamma. And then range of gamma naught will be H half of gamma and
kernel of gamma naught will be Hlo(Q). So, more generally we have the following

theorem.
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Theorem( Trace theorem). () C ]RN, bounded open set of class Cm+1, then there

So,

exists maps Yo Yy Y, 4 from Hm(ﬂ) - LZ(I‘), [' = 9Q, such that,

1) ifv e Hm(Q) sufficiently smooth, then

-1
v

" .
—-| , W = unit outwrad normaltoT
i r

a
Y, () = vl v, =5y, () =



gamm minus 1 v restricted to gamma.

So, these are all the various higher order normal derivatives, where nu is the unit outward
normal to gamma. So, you have the boundary here and then at each point you have a

tangent and then you have nu, which is unit normal vector, which is there.

.1
_]_7

m—1
m
(), Range(y, vy, ) =11 H (M)

j=0
And then
m
(3), Ker(y,vpv, ) =H (.
So, these are, this is the Trace theorem.
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So, if O = ]RN+, then nu is nothing but x over R, that is the direction, radius vector itself

is the normal for mod x equal to R. This is the unit normal. And if you have RN+, as I

) N .
said, omega equals R e then nu equals minus e N. So, the, the, we have, these are the
examples of this.

So now we have, theorem, this is



Theorem:( Green's theorem). Omega in () C R" bounded open set of class C1.

[=0Q,v € Hl(ﬂ),then forl < i < N, we have

i

W dx =— [p-2& =
£u - dx = gv ox dx + {yo(u)yo(v)yi dx , y = (yo, Y e yN)

unit outer normal on ().

In particular if one of them is in H ! O(Q) then you have integral

Jv Ju .. .
fu . dx =— fva—xdx. And this is this.
Q i Q i
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proof. So, we know because of Friedrich's theorem and so on, you have that C
infinity of () bar is dense in . In fact, D(]RN) itself will be the dense in H 1(9), and so C
infinity Q bar is dense in this.
So, if u_converges to u, v converges to v in H 1(Q), u,v in C infinity omega bar
intersection H 1(Q) of omega, then you have, by the classical Green’s theorem integral

omega undvn/ dxl_dx equals minus integral omega d un by d x i v n d x plus integral on

the boundary of uvy. This is the classical Green's theorem.

Now, you let n tend to infinity and you have, this is u n converges to gamma naught u and

v converges to gamma naught v. So, and you have everything else. So, in future we will

write, in future we write v instead of gamma naught v on d omega equals gamma, d v by
d nu instead of gamma 1 v on d(Q, et cetera whenever defined. So, we, because we know

what it is and, okay.
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So now let us take some simple consequences of this Green’s theorem which will be
useful in the next chapter. So, we set u identically equal to 1 and v = v, inH 1(Q) omega

bounded open set. So, you get
v,
fa—xdx = fviyidc
Q i r
and therefore that will not be there. So, and then integral on gamma u that is this thing

and v, nu 1 d sigma. So, should write d sigma which is the surface element for the

integration on the surface.

Now v = (v1 yeer vN) in H 1(Q)N. And then you write this for each i and sum over i you

N v N
| ¥ 5rdx =/ ¥ vydo
Qi=1 L ri=1 i

And that is exactly the Gauss, that is divergence of v integral on omega equals integral on

gamma v dot nu. And that is d sigma, and this is the Gauss Divergence theorem.
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Sonow let, v € HZ(Q) and so you write

du OJv
f dx. Ox.
Q A L

v
dx =— [ Auvdx + fyvyidc
Q r N

]

2
vdo

vdx+fav
i

a
[Vu - Vodx =— | rm
Q o i

Now if, ifu,v € H ? () then we can write the same thing with v instead of u. Then if you

subtract then you will get
d

o
r o

f(uav — vau) dx = f(ua—y— v
Q
So, all these are various applications. We will use them. So, we come to an end of

this chapter but before winding up we will do some exercises in the next session.



