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Before starting I just want to make a few corrections in the previous video. So, first one is

when motivating Lion's lemma I wrote the following

. Now, you would have figured out𝑢 ∈ 𝐿2(Ω),  ∂𝑢
∂𝑥

𝑖
∈ 𝐿2(Ω),  1 ≤ 𝑖 ≤ 𝑁 ⇒ 𝑢 ∈ 𝑊1,𝑝 (Ω)

that this is not what I meant. I meant . So, that is the first correction.𝑢 ∈ 𝐻1(Ω)

Second correction is when we define this in proving Korn’s inequality we define the space E

which is set of all : , }. And here I define𝐸 = {𝑣 ∈ (𝐿2(Ω))3 ϵ
𝑖,𝑗

(𝑣) ∈ 𝐿2(Ω) 1 ≤ 𝑖, 𝑗 ≤ 3

norm of

.||𝑣||
𝐸

2 =
Ω
∫

1

3

∑ |𝑣
𝑗
|2𝑑𝑥 +

Ω
∫

1

3

∑ |ϵ
𝑖.𝑗

(𝑣) |2𝑑𝑥

So, what I wrote last time, the sigma ij equals 1 to 3 was missing, so that has to be added, so

these are the minor corrections which I made, wish to make. Now, we are going to start an

important topic this is called trace theory. So, I have been always saying that the Sobolev



spaces form the natural functional analytic framework in which we look for solutions of

partial differential equations.

So, when solving partial differential equations we are often encountering boundary value

problems, so omega will be a bounded domain and in the domain the solution u will satisfy

some differential equation and on the boundary it will satisfy some conditions like

this is the outer normal derivative on the boundary. So, we wish𝑢 = 0,  𝑜𝑟 ∂𝑢
∂γ = 0,  𝑜𝑛 ∂Ω.  

to make give a meaning to these expressions.

This need not be 0, it could be other functions also. So, when if you for instance if you are if

and if of i for instance or , then this implies that C( ).𝐼 = (0, 1) 𝑢 ∈ 𝐻1(𝐼) 𝑊1,𝑝(𝐼) 𝑢 ∈ 𝐼

Therefore, u(0), u(1) well defined and if you are in higher Sobolev order, Sobolev spaces like

h m then you will be in space of continuously differentiable or more functions, so successive

derivatives of u at the boundary points are also well defined.

Now, if you are in higher dimensions say , then if you, you do not always have this, in𝑁 ≥ 2

order to have this continuity inclusion, inclusion space of continuous or differentiable

functions you need to go to very high order Sobolev spaces as you know and if you𝑚 > 𝑁
𝑝

are in etcetera it may not always be true.𝐻1

So, what do we mean by u on the boundary? Now, if you take a function and𝑢 ∈ 𝐿𝑝(Ω) 𝐻1

functions or functions are all in and therefore these are only defined almost𝑊1,𝑝 𝐿𝑝

everywhere and the measure of the boundary is 0 and therefore it does not make sense to talk

of the value of u or the value of derivatives of u on the boundary.

But we want to make use of the fact that we know something more about the derivatives of

the function, namely they are also in spaces and using that we wish to make, give a𝐿𝑝

meaning to what is meant by u restricted to the boundary or du by d nu restricted to the

boundary and so on and these are called traces of the function on the boundary and that is

why we call this trace theory.

In what follows I will do everything for but one can easily change it to any other p if𝑝 = 2

you like but it is more convenient for me therefore I will, it is enough to do this. So, theorem



and I will do it for the domain Rn plus and then the transition from that to any other omega of

class and so on is using the coordinate charts, the mappings from q to the𝐶𝑘, 𝐶1

neighborhoods on the boundary which we have used many times.

And therefore, we will wave our hands about that, but we will try to do in as much detail as

possible the theory for Rn plus because that is where the key thing lies and everything else

can thereafter be easily done from that.

Theorem: So, there exists a continuous linear map So,γ
0
: 𝐻1(ℝ𝑁

+
) → 𝐿2(ℝ𝑁−1)

recall you have that , so this is and this is and this is and then and this is theℝ𝑁 ℝ𝑁−1 𝑥
𝑛

ℝ𝑁
+

boundary of Rn plus, so d of So, we have a function mapping from toℝ𝑁
+

, ℝ𝑁−1 𝐻1(ℝ𝑁
+

)

the boundary such that if , so it is a continuous function on the𝑢 ∈ 𝐻1(ℝ𝑁
+

) ∩ 𝐶(ℝ𝑁
+

)

closure of , then . So, this is the first trace theorem which we want toℝ𝑁
+

γ
0
(𝑢) = 𝑢|

ℝ𝑁−1

see.
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So, now let us try to give a

Proof: So, as usual we start with let and we are going to use the𝑣 ∈ 𝐷(ℝ𝑁)

fundamental theorem of Calculus every time. So

|𝑣(𝑥', 0)|2 =−
0

∞

∫ ∂
∂𝑥

𝑁
(|𝑣(𝑥', 𝑥

𝑁
)|2)𝑑𝑥

𝑁



differentiating the and then integrating with respect N which means you are just going to   𝑥
𝑁

get the difference of the end values at infinity because we are then , it will be 0 and at𝐷(ℝ𝑁)

the lower end point it is be =0.   𝑥
𝑁

So, we get v of x dash 0 and that is why we have picked up a minus sign in the process. So,

this is equal to,

=− 2 −
0

∞

∫ 𝑣(𝑥', 𝑥
𝑁

) ∂
∂𝑥

𝑁
𝑣(𝑥', 𝑥

𝑁
)𝑑𝑥

𝑁

≤
0

∞

∫(|𝑣(𝑥', 𝑥
𝑁

)|2 + | ∂
∂𝑥

𝑁
𝑣(𝑥', 𝑥

𝑁
)|2𝑑𝑥

𝑁

So, now if you integrate with respect to , so on the left hand side you will get integral So, in𝑥'

other words we have

ℝ𝑁−1
∫ (|𝑣(𝑥', 0)|2𝑑𝑥' ≤

ℝ𝑁
+

∫ | ∂
∂𝑥

𝑁
𝑣(𝑥', 𝑥

𝑁
)|2𝑑𝑥

𝑁

|v| restricted to , , the norm in Rs minus 1 is less than equal to norm vℝ𝑁−1 − {0} ℝ𝑁−1 𝐿2

in 1 . So, v going to V of x dash 0 gives you a continuous linear map ofℝ𝑁
+

𝐷(ℝ𝑁)

restricted to with norm 1 into of and therefore extends, but you know thatℝ𝑁
+

ℝ𝑁
+

𝐿2 ℝ𝑁−1

restrict to is dense in , one of the earliest theorems we proved in for𝐷(ℝ𝑁) ℝ𝑁
+

𝐻1`(ℝ
𝑁

+
)

any p in fact, and therefore in particular for p equals 2.
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And therefore extends uniquely to a continuous linear map which we call from

.γ
0
: 𝐻1(ℝ

𝑁

+
) → 𝐿2(ℝ𝑁−1 )

So, now we have to show. So, now let v belong to intersection continuous in𝐻  1(ℝ
𝑁

+
) ℝ𝑁

plus closure, so we want to show that gamma naught of v is nothing but the restriction. So,

now extend v to by reflection, then v belongs to this we know because theℝ𝑁 𝐻1(ℝ
𝑁

) 

reflection is a prolongation operator and it is also because it is continuous on plus and youℝ𝑁

are just reflecting it this also in C of ℝ𝑁

So, we have all these things. Now, you choose decreasing to 0, mollifier andϵ
𝑚

ρ
𝑚

= ρ ∗ ϵ
𝑚

then in D of support of in B(0,2) and zeta identically 1 on B(0,1), and weς ℝ𝑁 ς 0 ≤ ς ≤ 1,

put and therefore support of equals B(0,m) and is identically 1 on Bς
𝑚

(𝑥) = ς(𝑥/𝑚) ς
𝑚

ς
𝑚

(0, m).

So, all these we know before and what do you know? One of the first results which we have

seen is that pointwise, because you have a continuous functionρ
𝑚

∗ 𝑣(𝑥) → 𝑣(𝑥)

convolving with the mollifier. It just gives you converges to v of x, we have seen this when

studying convolution of functions and also we have that v, m converges to v in and𝐻1(ℝ
𝑁

)

we have that , .ς
𝑚

𝑣
𝑚

All this we have seen in the very first theorem where we proved that the is dense in𝐷(ℝ𝑁)

, , so the same things we are doing here and therefore you have vm𝐻1(ℝ
𝑁

) 𝑊1,𝑝(ℝ
𝑁

)

converges to v in as well and that implies that in .𝐻1(ℝ
𝑁

+
) γ

0
(𝑣

𝑚
) → γ

0
(𝑣) 𝐿2(ℝ

𝑁−1
)

But what is ? point wise because zeta m is identically 1 on B 0 m, so youς
𝑚

ρ
𝑚

∗ 𝑣 → 𝑣 

have bigger and bigger and so eventually every point will come under some big ball of radius

m and consequently you will have that this becomes stationary point wise and consequently



you will have that it also converges to 0 point wise and but what is v m restricted to Rn minus

1.

is nothing but because that is how we proved, we extended the was definedℝ𝑁−1 γ
0
(𝑣

𝑚
) γ

0

by this because and therefore will converge it, converge and we know𝑣
𝑚

∈ 𝐷(ℝ𝑁) γ
0
(𝑣

𝑚
)

that , converges to . No, sorry, but because you know that it converges in𝑣
𝑚

→ ℝ𝑁−1 𝑣|
ℝ𝑁−1

for some subsequence must converge point wise to .𝐿2(γ
0
(𝑣

𝑚
)) γ

0
(𝑣 )

And therefore we have that is nothing but… so this implies thatγ
0
(𝑣 ) 

So, that is… this converges to point wise and since it alsoγ
0
(𝑣 ) = 𝑣|

ℝ𝑁−1 . 𝑣|
ℝ𝑁−1

converges in therefore you have that these two are equal, so that proves this theorem.𝐿2


