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So, we are looking at the different definition of and . So, if𝑊𝑠,𝑝(Ω) ,  𝑠 ∈  ℝ,  1 ≤ 𝑝 < ∞

, then we define it as the . So, this is𝑠 =− 𝑚,  𝑚 ∈ 𝕫,  𝑚 ≥ 0 (𝑊
0

𝑚,𝑝(Ω))* = 𝑊−𝑚,𝑝'(Ω)

how we define it. So, in this case there are some, I want to correct, something which I wrote

last time.

Erratum: So, I wrote the following. Since contains derivatives of(𝑊 1,𝑝(Ω))* 𝐿𝑝'(Ω) 

functions, we denote it by , so maybe 1 p omega minus 1 p dash. So you might𝑊 −1,𝑝'(Ω)

have noticed the mistake. So, this is, it should be the dual in this place and that is, please

correct that mistake which we have. So, we said this.

Then in case of then we define that𝑝 = 2,  Ω = ℝ𝑁,  

𝐻𝑠(ℝ𝑁) = {𝑢 ∈ 𝐿2(ℝ𝑁):  (1 + |ξ|2)
𝑠
2 𝑢

^
(ξ) ∈ 𝐿2(ℝ𝑁)}.

𝐻−𝑠(ℝ𝑁) = {𝑢 ∈ 𝑆'(ℝ𝑁):  (1 + |ξ|2)
− 𝑠

2 𝑢
^
(ξ) ∈ 𝐿2(ℝ𝑁)}.



So, this is both of them for and this is how we define it.𝑠 ≥ 0 

And then we showed that in fact when s equals 1 this is indeed the case. So, now let us by

definition if and then by definition this means𝑢 ∈ 𝐿2(Ω) ∂𝑢
∂𝑥

𝑖
∈ 𝐿2(Ω),  1 ≤ 𝑖 ≤ 𝑁,

. Similarly, if , m positive integer and , again𝑢 ∈ 𝑊 1,𝑝(Ω) 𝑢 ∈ 𝑊 𝑚,𝑝(Ω) ∂𝑢
∂𝑥

𝑖
∈ 𝑊

𝑚,𝑝
(Ω)

by definition this implies that . So, this just comes by definition.𝑢 ∈ 𝑊 𝑚+1,𝑝(Ω)
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So, now we want to extend this to the case of negative indices also and so we have a very

nice lemma, so this is a theorem and it goes by the name sometimes of lemma of Lions.

Theorem: So, , or a bounded open set of class . IfΩ = ℝ𝑁,  ℝ
+

𝑁 𝐶1 𝑖𝑛 ℝ
𝑁

then .𝑢 ∈ 𝐻−1(Ω),  ∂𝑢
∂𝑥

𝑖
∈ 𝐻−1(Ω) ∀ 1 ≤ 𝑖 ≤ 𝑁, 𝑢 ∈ 𝐿2(Ω)

proof: We will do it in the case where it is very easy. So,Ω = ℝ𝑁 

then𝑢 ∈ 𝐻−1(Ω),  ∂𝑢
∂𝑥

𝑖
∈ 𝐻−1(Ω) ∀ 1 ≤ 𝑖 ≤ 𝑁,  

 (1 + |ξ|2)
1
2 𝑢

^
(ξ),  (1 + |ξ|2)

− 1
2 ξ

𝑖
 𝑢

^
(ξ) ∈ 𝐿2(ℝ𝑁)

because I am taking the Fourier transform of with a 2 pi i coming in but that is just a∂𝑢
∂𝑥

𝑖

constant, so all these belong to . And this means that𝐿2(ℝ𝑁)

ℝ𝑁
∫ (1 + |ξ|2)−1(1 +

𝑖=1

𝑁

∑ |ξ
𝑖
|2)|𝑢

^
(ξ)|2𝑑ξ < ∞ .

⇒ 𝑢
^

∈ 𝐿2(ℝ𝑁) ⇒ 𝑢 ∈ 𝐿2(ℝ𝑁).

So, for a full proof, see the book of Duraut and Lions, where you can have a proof of this. It

is not very easy. Several generalizations of this result are available and one of the most

comprehensive results is due to Amrouche and Giraut, which says that: if and m isΩ ⊂ ℝ3

any integer in Z positive or negative and if such that for all𝑣 ∈ 𝐷'(Ω) ∂𝑣
∂𝑥

𝑖
∈ 𝐻𝑚(Ω)

, then this implies that .1 ≤ 𝑖 ≤ 𝑁 𝑣 ∈ 𝐻𝑚+1(Ω)

So, v is just a distribution in this case. So, in fact, we have done one exercise long ago in the,

where we said that the v is in distribution such that is in , then , so we have seen∂𝑣
∂𝑥

𝑖
𝐿2 𝑣 ∈ 𝐻1

such things here. So, now we will use this Lion's lemma in a very nice way to prove a very

important inequality which is fundamental in the theory of elasticity which we will see in the

next chapter. So, for that we need some notation.
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Notation: bounded open set, bounded connected open set, class , ,Ω ⊂ ℝ3 𝐶1 𝑉 = (𝐻1(Ω))3

so each component is in and you have the product norm. So, if ,𝐻1(Ω) 𝑣 = (𝑣
1
, 𝑣

2
, 𝑣

3
) ∈ 𝑉

so then we define for 1 ≤ 𝑖, 𝑗 ≤ 3,  

------ in elasticity theory this is called the strainϵ
𝑖 𝑗 

(𝑣) = 1
2 (

∂𝑣
𝑖

∂𝑥
𝑗

+
∂𝑣

𝑗

∂𝑥
𝑖
) 

tensor. It is a symmetric thing, i j is the same as j i, so this is called a symmetric thing.

So, norm v is the usual product norm which is got from .𝐻2(Ω)

Theorem: (Korn’s inequality). Let bounded domain which means connected openΩ ⊂ ℝ3

set of class There exists a depending only on omega such that for every we𝐶1.  𝐶 > 0 𝑣 ∈ 𝑉

have

Ω
∫

𝑖,𝑗=1

3

∑ |ϵ
𝑖 𝑗

(𝑣)|2𝑑𝑥 +
Ω
∫

𝑖=1

3

∑ |𝑣
𝑖
|2𝑑𝑥 ≥ 𝐶 ||𝑣||2

𝑉
  .

||𝑣||2
𝑉

=
𝑖=1

3

∑ ||𝑣
𝑖
||2

1,Ω
  .
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proof: Define

𝐸 = {𝑣 ∈ (𝐿2(Ω))3: ϵ
𝑖 𝑗

(𝑣) ∈ 𝐿2(Ω),  1 ≤ 𝑖, 𝑗 ≤ 3 } .

So, in particular V is contained in E because if v is in all the first derivatives are in and𝐻1 𝐿2

therefore epsilon ij of v is also in L2, so automatically we have V is contained in E.

Then you equip norm on E is given by

||𝑣||
𝐸

= (
Ω
∫ |ϵ

𝑖 𝑗
(𝑣)|2𝑑𝑥 +  

Ω
∫

𝑖=1

3

∑ |𝑣
𝑖
|2𝑑𝑥)

1
2  .

So, then E is a Hilbert space with this norm. I leave you to check this, so this is some simple

checking which you have to do. So, you just have to show, well it is a norm, it comes from

an inner product is obvious because you have all L2 terms here and then all you have to do is

to check it is complete, so if you take a Cauchy sequence, already it will be Cauchy in L2, so

you will have a convergent subsequence, then you have to show that this will also have

epsilon ij of v will also convert to some vij. Now, you must show the limit is precisely epsilon

ij of the limit of the base.

So, that is the standard checking term. Now, easy calculation gives the following



∂2𝑣
𝑖

∂𝑥
𝑗
∂𝑥

𝑘
= ∂

∂𝑥
𝑗

(ϵ
𝑖 𝑘

(𝑣)) + ∂
∂𝑥

𝑘
(ϵ

𝑖 𝑗
(𝑣)) − ∂

∂𝑥
𝑖

(ϵ
𝑗 𝑘

(𝑣)) .

So, this is just algebra, you just have to write out and expand. so this means that E is

contained in V. And the converse we already show, so E=V. So, you have that the two spaces

are vector spaces. Now, we know that ||𝑣||
𝐸

≤ 𝐶||𝑣||
𝑉

 .

So, if you take the square, take the norm, etcetera that will be less than some constant𝐿2

times the norms of the first derivatives and therefore you will get that this is nothing but less

than equal to constant times this. That means the is continuous, which means by𝑖𝑑: 𝑉 → 𝐸

the open mapping theorem one, one on two continuous implies identity map is an

isomorphism, therefore norms are equivalent and that is precisely Korn's inequality.

Because what is the Korn’s inequality, it is precisely saying norm v is less than C times the

other norm, so that is exactly the Korn’s inequality. So, this very nice application of the open

mapping theorem and it is nice, it is an important inequality in the theory of PDEs.
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So, now we conclude with what we call the trace spaces.

Trace spaces: So, we are going to deal with p=2, though we can deal with other things, so we

want to define where So, , , opens set, so assume of class𝐻𝑠(Γ) Γ = ∂Ω. Ω ⊂ ℝ𝑁 𝑁 ≥ 2 Ω

, so this much is not necessary.𝐶∞

But we do not want to fuss around, so we will assume maximum smoothness, so that we do

not have to make any qualifications anywhere but you of course you can reduce the necessary

smoothness certainly, and locally on the same side of its boundary. So, when you move along



the boundary the domain is always on one side of it depending whether you go clockwise or

anti-clockwise.

So, you have domains like this, so if you go like this in an anti-clockwise direction the

domain will always be on the left of it. So, what we are not allowing is that a domain like

this, suppose I have a domain like this and this is also taken away. Now, this domain, so you

have a domain on both sides of this boundary and therefore this is not allowed such domains,

so now gamma equals is compact.∂Ω

class of and bounded, so you can cover by finite number, and its same side of theΩ 𝐶∞

boundary and since you say gamma is, when you say class we mean bounded boundary𝐶∞

and therefore gamma will be compact, so we can cover by a finite number of neighborhoods

and there exists bijections{𝑈
𝑗
}𝑘

𝑗=1
  ,  𝐶∞ 𝑇

𝑗
:  𝑄 → 𝑈

𝑗
  .

If you recall what is, so you had Q here and then you had the boundary, so every

neighborhood you have you, so will be mapped to U intersection omega and then Q_0𝑄
+

 

will be mapped to d omega intersection u and all these Tj and Tj inverse are, these are Tj, Tj

inverse are all .𝐶∞

So, associated partition of unity , so we are only covering the boundary now, so we{ψ
𝑗
}𝑘

𝑗=1
  ,  

have a finite number of sets for the boundary, so that is an open collection of open sets, union

is open, so you take a partition of unity corresponding to that. So, supp ,(ψ
𝑗
) ⊂ 𝑈

𝑗

1 ≤ 𝑖 ≤ 𝑘,   0 ≤ ψ
𝑗

≤ 1 𝑎𝑛𝑑 
𝑗=1

𝑘

∑ ψ
𝑗

= 1 𝑜𝑛 Γ.  
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Now, is a smooth dimensional manifold, which implies there exists a naturalΓ (𝑁 − 1) 

measure on induced by the Lebesgue measure on . You can do this in many ways, youΓ ℝ𝑁

can use an induced Lebesgue measure, you can also call the dimensional, Housdoff(𝑁 − 1)

measure, Minkowski, the various ways of defining the measure.

However, since the domain is smooth all these things will agree with each other and therefore

you have some natural measure n minus 1 dimensional surface measure, natural, so n minus 1

dimensional surface measure on gamma induced by Lebesgue measure in . Therefore, weℝ𝑁

can define an .𝐿𝑝(Γ),  𝑓𝑜𝑟 𝑝 ≥ 1
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So, now let , so then you can write Now is supported in𝑢 ∈ 𝐿2(Γ) 𝑢 =
𝑗=1

𝑘

∑ ψ
𝑗
𝑢 . ψ

𝑗
𝑢 𝑈

𝑗
 .

Now, you consider

𝑣
𝑗
(𝑦',  0) = (ψ

𝑗
𝑢 )(𝑇

𝑗
(𝑦', 0))  ,   ∀ (𝑦', 0) ∈ 𝑄

0
 .

So, what are you doing? You are taking a point on the axis in Q, from there you are going to u

j to the boundary here and then you are taking the value of u psi ju which is supported in the

set and then, so for all y dash 0 in q 0.



Now, supp , so extend to by 0 outside . Now, maps(𝑈
𝑗
) ⊂ 𝑄

0
ℝ𝑁−1 𝑄

0
𝑢 → 𝑣

𝑗
 ,  1 ≤ 𝑗 ≤ 𝑘,  

because you have taken the image using some C infinity maps. This is in𝐿2(Γ) → 𝐿2(ℝ
𝑁−1

) ,  

L2, and then therefore this will be in outside you extend it by 0 and therefore they𝐿2(𝑄
0

)

are all in . So, if s is positive then you define𝐿2(ℝ
𝑁−1

)

𝐻𝑠(Γ) = {𝑢 ∈ 𝐿2(Γ):  𝑣
𝑗

∈ 𝐻𝑠(ℝ𝑁−1), 1 ≤ 𝑗 ≤ 𝑘} .

Now, we must check, we will not do this, must check that this definition does not depend on

the choice of the covering . So, whatever cover you take, finally the spaces{𝑈
𝑗
}𝑘

𝑗=1
  𝑜𝑓 Γ

which you get will always be the same. And if we define the dual𝐻−𝑠(Γ) = (𝐻𝑠(Γ))*,  

space.

So, this is how we define spaces on the boundary. You can do it for the other p also, we𝐻𝑠

have done it for p=2. There is a similar way you can easily do it for other p as well. Now,

these are called the trace spaces which we will use when studying boundary value problems

later on.


