Sobolev Spaces and Partial Differential Equations
Professor S Kesavan
Department of Mathematics
Institute of Management Science

The spaces W {s, p}
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So, we defined Wo'p(ﬂ) = Lp(ﬂ). Then we define Wm'p(ﬂ), so this is for all m > 1 integer.

Now, we want to define Ws'p(Q) for all s € R, so this is our aim, so this is what we are
going to do now. So, we are going to study dual spaces, fractional order spaces and trace
spaces. Trace spaces are the Sobolev spaces defined on the boundary, so this is our program

for the moment.
So, we start with the negative integers. So, we have the following definition:

Definition: Let 1 < p < oo, let p' denote the conjugate exponent of p. Let m be a positive

integer. Let (1 C R" be an open set. Then the dual of the space Wom’p(ﬂ) will be denoted by

W_m'p'(ﬂ). Ifp = 2, H "(Q) is the dual of Hmo(ﬂ). So, this is the definition of the Sobolev

spaces for the negative integers.
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So, remark now.

Remark: HmO(Q) real Hilbert space, so in principle by the Riesz representation theorem can
be identified with its own dual. This is the Riesz representation theorem, but we do not do so.

But we do not do so except when m equals 0, that is LZ(Q)* = LZ(Q).

So, we have, when we have a tower of Hilbert spaces, we will have

H (@ H (@- L) =L > H (- H @
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Now, why do we have these inclusions? Because in general if we have V contained in H in
Hilbert spaces continuous and dense inclusion H identified with H*, then we have V is
contained in H which is equal to H star, which can be identified as a subspace of V*. So, this

standard thing in Hilbert space theory.

So, whenever you have a dense and continuous inclusion then the dual will be included in the
opposite direction; that is true and since we identify the two duals so we have this dual so you
have this inclusion. Now, it is obvious why we do not want to simultaneously identify v with
v star because then all of them will become equal which is absurd and therefore we always

keep them separate.

So, when you have a tower of Hilbert spaces, so you have one space which is called the Pivot
space, which is identified with its own dual and all other duals are separated and you have
because of the continuous and dense inclusions, you have the dense inclusions and
continuous inclusions in the opposite direction. So, now more thing, the presence of p dash in
the dual is clear because we are dealing with LP spaces and therefore the conjugate exponent

will naturally appear in the dual space.



So, but why do we denote the dual of Wom'p(ﬂ) by W ~™(Q) and not the dual of
w m'p(Q) itself. Now, there is a reason for this. The reason for this is now if you have W m

plus 1, so m is a positive integer, then if you take u € W m'p(Q), then g—; eEW m'p(ﬂ).

So, we would like this to continue, so we would like if u € LP(Q) which is Wo'p(ﬂ) then

g—;‘ eEwW _1'p(ﬂ). We want this to happen. Now, this will happen only with the definition

which we have given as the following proposition we will prove.

(Refer Slide Time: 7:56)

Vg, W 7207 e am opunndd owd by 1apen

&
F ol do e Sud it WA Cap WY T T, - R, “f;}
F"C"“:l wp i p 6 et Cme.\‘):%M)Jm koo NPTEL
v .
r—_'(_u-\.‘ Ié’!w-fﬁ %‘EDQ%E.A;
Ja= S
5 S @r
e, = W a3 R\

{ wohleh jn %\l“‘dnh, T e aeen %a.u’\ %J.M.L‘)

i) G0 i s
£
}‘F - : A -?'?-ﬂ
= 2 § 4l
Wt = W S BT\ g i}
C bl o ﬂvuw b e e 3&»—14’\ enien ) NPTEL
Han  WFL 2 enan VB
sLitn % i

B ori oM, wd Fah de duad & W00, 0 abe 2.




proposition: let ) R" be an open set and let 1 < p < oo, let capital F belong to the dual

of Wl'p(ﬂ), (respectively Wol'p(ﬂ)), then there exists fo'""’ fN € va(ﬂ), p dash equals
conjugate exponent of p such that for all u € Wl'p(ﬂ), (respectively Wol'p(ﬂ)) we have
A
u
Fv) = ffovdx + ¥ J5-dx
Q i=1Q ¢

N
So, if we define ||v||1pQ= |U|0pg+ 2|
Ps e i=1

which is equivalent to the norm defined

Ju
0x.
l

|0,p,ﬂ !

earlier. If Q is bounded and F is in the dual of Wl’pO(Q), we can take fo = 0.
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proof: So, let E = LP(Q)NJr1 and let T: Wl'p(ﬂ) or Wol'p(ﬂ)—> E, the natural isometry,

namely T(v) = (v, ;—v,

an isometry, T is an isometry, so close subspace of Banach space is also Banach and therefore
by the open mapping theorem there exists an S: G — Wl'p(ﬂ) or Wol’p(Q) , inverse of T. So,

this is the open mapping theorem. So, now you define h € G = F(S(h)), so this is a
continuous linear functional and extends to E by Hahn - Banach, so we have a closed

subspace on which we have (())(13:38) a function, thus preserving the norm, so this will



extend it to by the Hahn Banach theorem. So, let us call that ®: E - R and then
D| = FeS
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So, e is what LP (())(14:04), so this implies there exists fO,...., fN € Lp'(ﬂ), such that if

N
Vy Ve Uy € E, then &) = [ fov dx + ¥ [ fl,vdx, because it is just Riesz
Q i=10

representation theorem is f naught v on omega plus sigma i equals 1 to n integral on omega

N

fiv and if ||v||k =) |vi|0pﬂ, we have ||| = Orlli:i)liv |f|0p,Q. This is just the product,
i=0 ” si= e



dual space, dual of a product is given this way and of course, ||®|| = ||F||, by definition

because it is a Hahn - Banach extension and therefore it is an extension. Now, for any

v € WPQ) or W Ol'p(ﬂ), whichever we are considering, we have v = S(T(v)), therefore

N
F(v) = ®(Tv) = [ fvdx + ¥ [ f ==dx.
Q i=10Q i

So, that proves one part of the theorem. If omega is bounded and F in dual of W1, p 0 of

omega then by Poincare inequality enough to consider the isometry T w' 0(Q) - (LP(Q))N,
namely T(v) = (;Tv,....,aaTv ), because the norm here is given by just the LP norm the
1 N

derivatives and therefore we can take f 0= 0. So, this proves the proposition.
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So, now what is the, how does this justify our notation? So, let us take ¢ € D(L). So, by

definition,

N N
F@) = [ fbdx+ X[ gkdv =f,@) = X[ —L (@)

=10

So, these are the distribution derivatives and therefore, so you can write this, or let us leave it

like that. So, then D(Q) is dense in w' O(Q) and therefore you can say we can identify f with



N

the distribution, f 0~ D a_xi and therefore, whereas if you are in the dual of w'? (Q), we
=1

cannot make, cannot do this for f in the dual of w' Q).

Because if you have a dense subspace then the definition of the functional is completely
determined if you define it on the dense subspace, whereas if you are in this, then to the
whole space there can be many possible extensions and therefore you cannot identify it with

that distribution derivative there and therefore if you wanted...

So, that is why we say that the dual, so hence, since w'? () contains derivatives of Lp'(Q),

S : . . T
we call it W * (). So, that is the reason which we are doing. So, now, that justifies it.
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Now, let us take m bigger than N by P, then W Om'p (Q) is contained in C (5) and you have

Holder continuous, Holder continuity is also there, therefore, if x, € Qand ¢ € D(Q), we

write Sx (P) = o(x 0), the evaluation function, the Dirac distribution concentrated at this
0

and you have |8xO((]))| = |(])(x0)| < |c|)|0,oo'Q < C||(|)||m’p’ﬂ. So, this implies that delta x

naught defines a continuous linear functional on w™? (Q) if m is bigger than N over P.

Therefore, this is for any p, therefore delta x naught belongs to Wm minus 1 p dash omega

for m large enough.
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Now, you can define, so having defined the negative things, now we can define Ws'p(ﬂ) can
be defined in a variety of ways and this gives rise to various types of Sobolev spaces, they
sometimes called Beppo Levi’s spaces and so on and so forth and but the thing, good thing is
if omega is a C infinity set smooth open set, then all the definitions will agree, so that is the
nice thing about it but depending on the singularities of the boundary you may get different

spaces, different functions, the spaces may not be identical.

And so we can, there are various ways of defining depending on your necessity how to define
it. So, one way of defining it is for the following; let1 < p < wandyoutake 0 < o < 1,

then you define

W) = {u € L'(Q): % e LP(Q x Q)}
x+y| ?

So, you define this as Wo'p(Q) and with the obvious norm, namely the LP norm of this

function, so that is the obvious norm. So, now if s = ¢ + m, m € z, m = 0, you define

w’PQ) = fu e W Du e WQ)V |o| = m}.

So, then this is how you define the spaces.



Now, W (@) = D(Q) in W"(Q) and W ""(Q) = dual of W " (Q). So, if p equals 2 we

say HS(Q) and H OS(Q), this is one way of defining Sobolev spaces for all the things.
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So, if p =2, Q= ]RN, we can also define HS(]R ) via the Fourier transform, so for s

positive, we define

HR) = e ll®"Y: 1+ D u® e L®Y)

and the associated norm,

all® g = S (1 + 18 u@lds.

R

So, this when s equals m, we have already seen this when it is an integer, so we just simply
do it the same way for all s, which is positive. So, now we show that this works for negative

indices as well. So the theorem.

Theorem: s > 0 real number, then



s, N 2.—5 * 2. N
H R)={meE:1+[) "u® el (R)}.

where E is the set of tempered distributions in RN. (Refer Slide Time: 28:29)
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proof: We will do it only in the case s equals 1. So,u € H _1(RN), then we saw there exists
naught fn in L2 of Rn, this we saw in the previous proposition such that
N

— + i E']RN
u=f, Elaxizue (R).

Why is it so? Because L functions are in the R tempered distribution, derivative of a
tempered distribution is again a tempered distribution and therefore you have that u is in s

dash of Rn and therefore you have u cap, we have seen the this this is equal to
A A N A 2 _i A 2 N
w=f + Y @uWE. f =1+ € u® e’ ®RY
i=1

Therefore, you have that, so this proves one way, namely if it is in H minus 1 then all these

things are true and now we want to prove the converse.
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2)‘%(5) e L*(R"). So, let ¢ € D(R") < S(R"), then

the Fourier inversion formula, this is of course contained in s of Rn and therefore by the

So, let u € S'(]R{N) and (1 + |[§]

L . . N " .. .
Fourier inversion formula there exists a € S(R') such that ¢ = . This is Fourier

1 _1
inversion. So, now you take k(§) = (1 + |<E|2)2 andk_ (§) = (1 + |E|2) 2.

Now, u(p) = u(ljj) = l;(llj). Now, k U E LZ(IRN)and kg € S(]RN) because that is the

definition of S (]RN), you have, when you multiply by any such polynomial you will have that

itisin, ky € LZ(]RN). So, therefore you can write



u(®) = J k,(® u@k® bEE
R

So, by the Cauchy Schwarz inequality, you have |u(d)| < |k_1ul\|0 & |k11v|0 e

mod u phi is less than equal to k minus 1 u cap in L2, so 0 Rn into mod k times psi in 0 Rn.

This is some constant which we do not have to worry about, so let us look at what happens to
k psi. So, k psi square 0 Rn L2 norm is equal to integral on Rn 1 plus mod z square into mod
psi square d xi. Now, if I change the variable xi to minus xi, this will be integral over Rn, I
will again get 1 plus mod xi square into mod psi of minus xi square d xi, which is equal to

integral over Rn 1 plus mod xi square into mod psi hat hat xi square d xi.

Because by the Fourier, again by Fourier inversion of double hat xi is nothing but f of minus
Xi, so you can check that very easily just by writing out the formulae. So, this is equal to this
and that is equal to integral over Rn 1 plus mod xi square into mod phi hat xi square d xi and

that is nothing but norm phi in 1 Rn.

So, this implies that u defines continue, so you have, this one is a constant and this one is less

than equal to constant times is nothing but norm phi square, norm phi in a 1 of Rn and

therefore u defines a continuous linear functional on H 1(]RN), implies H _1(]RN). So, we have

proved completely that

il g = 1+ ) u)ds.

R
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So, now we can recover for instance, we said that if m is sufficiently large then you have a

delta is in W "and so on. So, if you have 8= land therefore you have

(1 + &% * € L°(R"), if s > = So, this implies that § € H "(R"), if s > =,

So, whenever you, the same thing we already proved, m > %, we said § € W " and

therefore the same way, the same result we are recovering in the case p = 2. So, we will

continue with this later.



