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So, we defined . Then we define , so this is for all integer.𝑊0,𝑝(Ω) = 𝐿𝑝(Ω) 𝑊𝑚,𝑝(Ω) 𝑚 ≥ 1 

Now, we want to define for all , so this is our aim, so this is what we are𝑊𝑠,𝑝(Ω) 𝑠 ∈ ℝ 

going to do now. So, we are going to study dual spaces, fractional order spaces and trace

spaces. Trace spaces are the Sobolev spaces defined on the boundary, so this is our program

for the moment.

So, we start with the negative integers. So, we have the following definition:

Definition: Let , let denote the conjugate exponent of p. Let m be a positive1 ≤ 𝑝 < ∞ 𝑝' 

integer. Let be an open set. Then the dual of the space will be denoted byΩ ⊂ ℝ𝑁 𝑊
0

𝑚,𝑝(Ω)

. If is the dual of . So, this is the definition of the Sobolev𝑊−𝑚,𝑝'(Ω) 𝑝 = 2,  𝐻−𝑚(Ω) 𝐻𝑚
0
(Ω)

spaces for the negative integers.
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So, remark now.

Remark: real Hilbert space, so in principle by the Riesz representation theorem can𝐻𝑚
0
(Ω)

be identified with its own dual. This is the Riesz representation theorem, but we do not do so.

But we do not do so except when m equals 0, that is 𝐿2(Ω)* = 𝐿2(Ω).  

So, we have, when we have a tower of Hilbert spaces, we will have

𝐻2
0
(Ω) → 𝐻1

0
(Ω) → 𝐿2(Ω) = 𝐿2(Ω)* → 𝐻−1(Ω) → 𝐻−2(Ω).
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Now, why do we have these inclusions? Because in general if we have V contained in H in

Hilbert spaces continuous and dense inclusion H identified with H*, then we have V is

contained in H which is equal to H star, which can be identified as a subspace of V*. So, this

standard thing in Hilbert space theory.

So, whenever you have a dense and continuous inclusion then the dual will be included in the

opposite direction; that is true and since we identify the two duals so we have this dual so you

have this inclusion. Now, it is obvious why we do not want to simultaneously identify v with

v star because then all of them will become equal which is absurd and therefore we always

keep them separate.

So, when you have a tower of Hilbert spaces, so you have one space which is called the Pivot

space, which is identified with its own dual and all other duals are separated and you have

because of the continuous and dense inclusions, you have the dense inclusions and

continuous inclusions in the opposite direction. So, now more thing, the presence of p dash in

the dual is clear because we are dealing with LP spaces and therefore the conjugate exponent

will naturally appear in the dual space.



So, but why do we denote the dual of by and not the dual of𝑊
0

𝑚,𝑝(Ω) 𝑊 −𝑚,𝑝'(Ω)

itself. Now, there is a reason for this. The reason for this is now if you have W m𝑊 𝑚,𝑝(Ω)

plus 1, so m is a positive integer, then if you take , then .𝑢 ∈ 𝑊 𝑚,𝑝(Ω) ∂𝑢
∂𝑥

𝑖
∈ 𝑊 𝑚,𝑝(Ω)

So, we would like this to continue, so we would like if which is then𝑢 ∈ 𝐿𝑝(Ω) 𝑊0,𝑝(Ω) 

. We want this to happen. Now, this will happen only with the definition∂𝑢
∂𝑥

𝑖
∈ 𝑊 −1,𝑝(Ω)

which we have given as the following proposition we will prove.
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proposition: let be an open set and let , let capital F belong to the dualΩ ⊂ ℝ𝑁 1 ≤ 𝑝 < ∞

of , (respectively ), then there exists , p dash equals𝑊1,𝑝(Ω) 𝑊
0

1,𝑝(Ω) 𝑓
0
,...., 𝑓

𝑁
∈ 𝐿𝑝'(Ω)

conjugate exponent of p such that for all , (respectively we have𝑢 ∈ 𝑊1,𝑝(Ω) 𝑊
0

1,𝑝(Ω)) 

.𝐹(𝑣) =
Ω
∫ 𝑓

0
𝑣 𝑑𝑥 +

𝑖=1

𝑁

∑
Ω
∫ ∂𝑢

∂𝑥
𝑖

𝑑𝑥

So, if we define which is equivalent to the norm defined||𝑣||
1,𝑝,Ω

= |𝑣|
0,𝑝,Ω

+
𝑖=1

𝑁

∑ | ∂𝑢
∂𝑥

𝑖
|

0,𝑝,Ω
 ,  

earlier. If is bounded and F is in the dual of we can take .Ω 𝑊1,𝑝
0
(Ω) ,  𝑓

0
= 0
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proof: So, let and let , the natural isometry,𝐸 = 𝐿𝑝(Ω)𝑁+1 𝑇: 𝑊1,𝑝(Ω) 𝑜𝑟 𝑊
0

1,𝑝(Ω) → 𝐸

namely . Now, let , a closed subspace because it is𝑇(𝑣) = (𝑣, ∂𝑣
∂𝑥

1
,...., ∂𝑣

∂𝑥
𝑁

 ) 𝐺 = 𝐼𝑚(𝑇) ⊂ 𝐸

an isometry, T is an isometry, so close subspace of Banach space is also Banach and therefore

by the open mapping theorem there exists an inverse of T. So,𝑆: 𝐺 → 𝑊1,𝑝(Ω) 𝑜𝑟 𝑊
0

1,𝑝(Ω) ,  

this is the open mapping theorem. So, now you define , so this is aℎ ∈ 𝐺 → 𝐹(𝑆(ℎ))

continuous linear functional and extends to E by Hahn - Banach, so we have a closed

subspace on which we have (())(13:38) a function, thus preserving the norm, so this will



extend it to by the Hahn Banach theorem. So, let us call that and thenΦ:  𝐸 → ℝ

.Φ|
𝐺

= 𝐹 ◦ 𝑆
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So, e is what LP (())(14:04), so this implies there exists , such that if𝑓
0
,...., 𝑓

𝑁
∈ 𝐿𝑝'(Ω)

then , because it is just Riesz𝑣
0
, 𝑣

1
,..., 𝑣

𝑁
∈ 𝐸,  Φ(𝑣) =

Ω
∫ 𝑓

0
𝑣 𝑑𝑥 +

𝑖=1

𝑁

∑
Ω
∫ 𝑓

𝑖
𝑣𝑑𝑥

representation theorem is f naught v on omega plus sigma i equals 1 to n integral on omega

fiv and if we have . This is just the product,||𝑣||
𝑘

=
𝑖=0

𝑁

∑ |𝑣
𝑖
|

0,𝑝,Ω
 ,  ||Φ|| =

0≤𝑖≤𝑁
max |𝑓|

0,𝑝',Ω
 



dual space, dual of a product is given this way and of course, , by definition||Φ|| = ||𝐹||

because it is a Hahn - Banach extension and therefore it is an extension. Now, for any

, whichever we are considering, we have therefore𝑣 ∈ 𝑊1,𝑝(Ω) 𝑜𝑟 𝑊
0

1,𝑝(Ω) 𝑣 = 𝑆(𝑇(𝑣)),  

.𝐹(𝑣) = Φ(𝑇𝑣) =
Ω
∫ 𝑓

0
𝑣 𝑑𝑥 +

𝑖=1

𝑁

∑
Ω
∫ 𝑓

𝑖
∂𝑣
∂𝑥

𝑖
𝑑𝑥

So, that proves one part of the theorem. If omega is bounded and F in dual of W1, p 0 of

omega then by Poincare inequality enough to consider the isometry ,𝑇: 𝑊1,𝑝
0
(Ω) → (𝐿𝑝(Ω))𝑁

namely , because the norm here is given by just the LP norm the𝑇(𝑣) = ( ∂𝑣
∂𝑥

1
,...., ∂𝑣

∂𝑥
𝑁

 )

derivatives and therefore we can take . So, this proves the proposition.𝑓
0

= 0
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So, now what is the, how does this justify our notation? So, let us take . So, byϕ ∈ 𝐷(Ω)

definition,

𝐹(ϕ) =
Ω
∫ 𝑓

0
ϕ 𝑑𝑥 +

𝑖=1

𝑁

∑
Ω
∫ 𝑓

𝑖
∂ϕ
∂𝑥

𝑖
𝑑𝑥 = 𝑓

0
(ϕ) −

𝑖=1

𝑁

∑
Ω
∫

∂𝑓
𝑖

∂𝑥
𝑖

(ϕ)𝑑𝑥

So, these are the distribution derivatives and therefore, so you can write this, or let us leave it

like that. So, then is dense in and therefore you can say we can identify f with𝐷(Ω) 𝑊1,𝑝
0
(Ω)



the distribution, and therefore, whereas if you are in the dual of , we𝑓
0

−
𝑖=1

𝑁

∑
∂𝑓

𝑖

∂𝑥
𝑖

𝑊1,𝑝 (Ω)

cannot make, cannot do this for f in the dual of .𝑊1,𝑝 (Ω)

Because if you have a dense subspace then the definition of the functional is completely

determined if you define it on the dense subspace, whereas if you are in this, then to the

whole space there can be many possible extensions and therefore you cannot identify it with

that distribution derivative there and therefore if you wanted…

So, that is why we say that the dual, so hence, since contains derivatives of ,𝑊1,𝑝 (Ω) 𝐿𝑝'(Ω)

we call it . So, that is the reason which we are doing. So, now, that justifies it.𝑊−1,𝑝 (Ω)
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Now, let us take m bigger than N by P, then is contained in and you have𝑊
0

𝑚,𝑝 (Ω) 𝐶(Ω) 

Holder continuous, Holder continuity is also there, therefore, if and , we𝑥
0

∈ Ω ϕ ∈ 𝐷(Ω)

write , the evaluation function, the Dirac distribution concentrated at thisδ
𝑥

0

(ϕ) = ϕ(𝑥
0
)

and you have So, this implies that delta x|δ
𝑥

0

(ϕ)| = |ϕ(𝑥
0
)| ≤ |ϕ|

0,∞,Ω
≤ 𝐶||ϕ||

𝑚,𝑝,Ω
 .

naught defines a continuous linear functional on if m is bigger than N over P.𝑊𝑚,𝑝 (Ω)

Therefore, this is for any p, therefore delta x naught belongs to Wm minus 1 p dash omega

for m large enough.
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Now, you can define, so having defined the negative things, now we can define can𝑊𝑠,𝑝(Ω) 

be defined in a variety of ways and this gives rise to various types of Sobolev spaces, they

sometimes called Beppo Levi’s spaces and so on and so forth and but the thing, good thing is

if omega is a C infinity set smooth open set, then all the definitions will agree, so that is the

nice thing about it but depending on the singularities of the boundary you may get different

spaces, different functions, the spaces may not be identical.

And so we can, there are various ways of defining depending on your necessity how to define

it. So, one way of defining it is for the following; let and you take ,1 ≤ 𝑝 < ∞ 0 < σ < 1

then you define

𝑊σ,𝑝(Ω) = {𝑢 ∈ 𝐿𝑝(Ω):  |𝑢(𝑥)−𝑢(𝑦)|

|𝑥+𝑦|
σ+ 𝑁

𝑝
∈ 𝐿𝑝(Ω × Ω)}

So, you define this as and with the obvious norm, namely the LP norm of this𝑊σ,𝑝(Ω)

function, so that is the obvious norm. So, now if , , you define𝑠 = σ + 𝑚 𝑚 ∈ 𝕫,  𝑚 ≥ 0 

𝑊𝑠,𝑝(Ω) = {𝑢 ∈ 𝑊𝑚,𝑝:  𝐷α𝑢 ∈ 𝑊σ,𝑝(Ω) ∀ |σ| = 𝑚}.

So, then this is how you define the spaces.



Now, in and dual of . So, if p equals 2 we𝑊
0

𝑠,𝑝(Ω) = 𝐷(Ω) 𝑊𝑠,𝑝(Ω) 𝑊−𝑠,𝑝(Ω) =  𝑊
0

𝑠,𝑝(Ω)

say and , this is one way of defining Sobolev spaces for all the things.𝐻𝑠(Ω) 𝐻
0

𝑠(Ω)
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So, if , we can also define via the Fourier transform, so for s𝑝 = 2,  Ω = ℝ𝑁 𝐻𝑠(ℝ
𝑁

)

positive, we define

𝐻𝑠(ℝ
𝑁

) = {𝑢 ∈ 𝐿2(ℝ𝑁):  (1 + |ξ|2)
𝑠
2  𝑢

^
(ξ) ∈ 𝐿2(ℝ𝑁)}

and the associated norm,

||𝑢||2
𝑠,ℝ𝑁 =

ℝ𝑁
∫ (1 + |ξ|2)

𝑠
2  |𝑢

^
(ξ)|𝑑ξ .

So, this when s equals m, we have already seen this when it is an integer, so we just simply

do it the same way for all s, which is positive. So, now we show that this works for negative

indices as well. So the theorem.

Theorem: real number, then𝑠 > 0 



𝐻−𝑠(ℝ
𝑁

) = {𝑢 ∈ 𝐸 : (1 + |ξ|2)
− 𝑠

2  𝑢
^
(ξ) ∈ 𝐿2(ℝ𝑁)}  .

where is the set of tempered distributions in . (Refer Slide Time: 28:29)𝐸 ℝ𝑁

proof: We will do it only in the case s equals 1. So, , then we saw there exists f𝑢 ∈ 𝐻−1(ℝ𝑁)

naught fn in L2 of Rn, this we saw in the previous proposition such that

𝑢 = 𝑓
0

+
𝑖=1

𝑁

∑
∂𝑓

𝑖

∂𝑥
𝑖

⇒ 𝑢 ∈ 𝐸'(ℝ𝑁).

Why is it so? Because functions are in the R tempered distribution, derivative of a𝐿2

tempered distribution is again a tempered distribution and therefore you have that u is in s

dash of Rn and therefore you have u cap, we have seen the this this is equal to

𝑢
^

= 𝑓
0

^
+

𝑖=1

𝑁

∑ (2π𝑖)ξ
𝑖
 .  𝑓

𝑖

^
⇒ (1 + |ξ|2)

− 1
2  𝑢

^
(ξ) ∈ 𝐿2(ℝ𝑁)

Therefore, you have that, so this proves one way, namely if it is in H minus 1 then all these

things are true and now we want to prove the converse.
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So, let and . So, let , then𝑢 ∈ 𝑆'(ℝ𝑁) (1 + |ξ|2)
− 1

2  𝑢
^
(ξ) ∈ 𝐿2(ℝ𝑁) ϕ ∈ 𝐷(ℝ𝑁) ⊂ 𝑆(ℝ𝑁)

the Fourier inversion formula, this is of course contained in s of Rn and therefore by the

Fourier inversion formula there exists a such that . This is Fourierψ ∈ 𝑆(ℝ𝑁) ϕ = ψ
^

inversion. So, now you take and .𝑘(ξ) = (1 + |ξ|2)
1
2 𝑘

−1
(ξ) = (1 + |ξ|2)

− 1
2

Now, . Now, and because that is the𝑢(ϕ) = 𝑢(ψ
^

) = 𝑢
^
(ψ) 𝑘

1
𝑢 ∈ 𝐿2(ℝ𝑁) 𝑘ψ ∈ 𝑆(ℝ𝑁) 

definition of , you have, when you multiply by any such polynomial you will have that𝑆(ℝ𝑁)

it is in, .  So, therefore you can write𝑘ψ ∈ 𝐿2(ℝ𝑁)



𝑢(ϕ) =
ℝ𝑁
∫ 𝑘

1
(ξ) 𝑢

^
(ξ)𝑘(ξ) ψ

^
(ξ)𝑑ξ

So, by the Cauchy Schwarz inequality, you have |𝑢(ϕ)| ≤ |𝑘
−1

𝑢
^
|

0,ℝ𝑁 |𝑘ψ
^

|
0,ℝ𝑁  .

mod u phi is less than equal to k minus 1 u cap in L2, so 0 Rn into mod k times psi in 0 Rn.

This is some constant which we do not have to worry about, so let us look at what happens to

k psi. So, k psi square 0 Rn L2 norm is equal to integral on Rn 1 plus mod z square into mod

psi square d xi. Now, if I change the variable xi to minus xi, this will be integral over Rn, I

will again get 1 plus mod xi square into mod psi of minus xi square d xi, which is equal to

integral over Rn 1 plus mod xi square into mod psi hat hat xi square d xi.

Because by the Fourier, again by Fourier inversion of double hat xi is nothing but f of minus

xi, so you can check that very easily just by writing out the formulae. So, this is equal to this

and that is equal to integral over Rn 1 plus mod xi square into mod phi hat xi square d xi and

that is nothing but norm phi in 1 Rn.

So, this implies that u defines continue, so you have, this one is a constant and this one is less

than equal to constant times is nothing but norm phi square, norm phi in a 1 of Rn and

therefore u defines a continuous linear functional on , implies . So, we have𝐻1(ℝ𝑁) 𝐻−1(ℝ𝑁)

proved completely that

||𝑢||2
−1,ℝ𝑁 =

ℝ𝑁
∫ (1 + |ξ|2)−1 |𝑢

^
(ξ)|2𝑑ξ .
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So, now we can recover for instance, we said that if m is sufficiently large then you have a

delta is in and so on. So, if you have and therefore you have𝑊−𝑚,𝑝 δ
^

= 1 

, if . So, this implies that if .(1 + |ξ|2)
− 𝑠

2 ∈ 𝐿2(ℝ𝑁) 𝑠 > 𝑁
2 δ ∈ 𝐻−𝑠(ℝ𝑁),  𝑠 > 𝑁

2

So, whenever you, the same thing we already proved, , we said and𝑚 > 𝑁
𝑝 δ ∈ 𝑊−𝑚,𝑝

therefore the same way, the same result we are recovering in the case . So, we will𝑝 = 2

continue with this later.


