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So we were proving the various compactness theorems, namely the Rellich - Kondrachov

theorem, which said that in a bounded open set the Sobelev embeddings almost all of them

are compact embeddings, except one, namely when is not compact.𝑝 < 𝑁,  𝑊1,𝑝 → 𝐿𝑝* 

Apart from that all the rest we have compact and we proved it, for the case p bigger than n it

comes directly from the Ascoli Arzela theorem.

And the fact that functions are in are Holder continuous. For We proved it using𝑊1,𝑝 𝑝 = 𝑁,  

and for we use the Frechet Kolmogorov theorem, which characterizes𝑝 < 𝑁 𝑝 < 𝑁

relatively compact sets in analogous to the Ascoli Arzela theorem. So, now we, these𝐿𝑝*

theorems are very useful when studying partial differential equations, especially nonlinear

problems and Eigenvalue problems. And now we will see an application of this theorem.
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Theorem: -a bounded and connected open set of class . Let denote theΩ ⊂ ℝ𝑁 𝐶1 𝑃
𝑚

(Ω) 

vector space of all polynomials in the variables over and of degree less than or𝑥
1
, 𝑥

2
,..., 𝑥

𝑁
 Ω



equal to m. Let , let and let be the equivalence class of v, in the1 ≤ 𝑝 < ∞ 𝑊𝑚+1,𝑝(Ω) 𝑣̇

quotient space , equipped with the norm𝑊𝑚+1,𝑝(Ω)/𝑃
𝑚

(Ω) 

.||𝑣̇||
𝑚+1,𝑝,Ω

= inf
𝑃
~

∈𝑃
𝑚

(Ω)
 ||𝑣 + 𝑃

~
||

𝑚+1,𝑝,Ω

So, this is the classical norm. This norm, so the theorem is this, is equivalent to the norm

defined by .𝑣̇ → |𝑣|
𝑚+1,𝑝,Ω
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proof. First of all, we want to show that this is well defined. So, if , this implies that𝑣̇
1

= 𝑣̇
2



and therefore it is𝑣
1

− 𝑣
2

∈ 𝑃
𝑚

(Ω) ⇒ |𝑣
1

− 𝑣
2
|

𝑚+1,𝑝,Ω
= 0 ⇒ |𝑣

1
|

𝑚+1,𝑝,Ω
 = |𝑣

2
|

𝑚+1,𝑝,Ω
 

well defined. It does not depend on the representative which you are choosing in the quotient

space. So, that is fine. So, the norm is well defined. And secondly if you have |𝑣|
𝑚+1,𝑝,Ω

 = 0

, so this means that because is connected, so if the first derivative vanishes it is𝑣 ∈ 𝑃
𝑚

(Ω) Ω

a constant, if the second derivative vanishes is the polynomial of degree 1, if the third

derivative vanishes the polynomial degree 2 etcetera, if the m plus 1th order derivative

vanishes then it has to be a polynomial of degree m.

That means v dot is equal to the 0 element in the quotient space, so therefore, and the

converse of course is true, and therefore you have that this defines a norm. So, this |𝑣 |
𝑚+1,𝑝,Ω

is in fact a norm on the quotient space, so there is no problem about that. (Refer Slide Time:

6:52)



So, now let us assume that , then you have , it is a polynomial of𝑣 ∈ 𝑊
𝑚+1,𝑝

(Ω) 𝑃
~

∈ 𝑃
𝑚

(Ω)

degree less than equal to m, then

|𝑣 |
𝑚+1,𝑝,Ω

 = |𝑣 + 𝑃
~

|
𝑚+1,𝑝,Ω

≤ ||𝑣 + 𝑃|
~

|
𝑚+1,𝑝,Ω

and this is true for all p. And therefore this implies that

|𝑣 + 𝑃
~

|
𝑚+1,𝑝,Ω

≤ inf
𝑃
~

∈𝑃
𝑚

(Ω)
 ||𝑣 + 𝑃|

~
|

𝑚+1,𝑝,Ω
 = ||𝑣̇ ||

𝑚+1,𝑝,Ω

So, one-way inequality we already have. So we want to show that the reverse inequality, so to

need to show there exists a constant C positive such that the reverse is true,

—----------(*)||𝑣̇ ||
𝑚+1,𝑝,Ω

≤ 𝐶|𝑣̇ |
𝑚+1,𝑝,Ω

 ,   𝑣 ∈ 𝑊
𝑚+1,𝑝

(Ω)

So, we will do it by contradiction, so this is the standard method of doing it and see how

compactness will come into play. So, assume the star fails. So, assume that this fails for every

c positive. So, what does it mean? That means even if I take, however large C I take there

will always be one for which the inequality will fail. So, I take C equals n for every n and

therefore for every n there exists such that𝑣
𝑛

~
∈ 𝑊

𝑚+1,𝑝
(Ω)

||𝑣̇
𝑛
||

𝑚+1,𝑝,Ω
> 𝑛|𝑣̇

𝑛
|

𝑚+1,𝑝,Ω



So, we can normalize this, so normalizing there exists such that𝑣
𝑛

∈ 𝑊
𝑚+1,𝑝

(Ω)

as||𝑣̇
𝑛
||

𝑚+1,𝑝,Ω
= 1 𝑎𝑛𝑑  |𝑣

𝑛
|

𝑚+1,𝑝,Ω
 →  0 𝑛 → ∞ .

So, now we have to, so we assume the inequality fails for every constant and we have got a

sequence. Now, we have to get a contradiction. So, without loss of generality by choosing a

suitable representative we can assume . So, we can choose a p tilde suitably|𝑣
𝑛
||

𝑚+1,𝑝,Ω
≤ 2 

such that it is also the infimum is 1, so there must be 1 p tilde for which it will be less than 2,

so if we add that to this nothing changes in all these inequalities, so we can assume that norm

vn is less than equal to 2. Just by the definition of the norm in the quotient space.
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So, now vn is bounded in and so by Rellich - Kondrachov or Rellich you have,𝑊
𝑚+1,𝑝

(Ω)

so we will work with the subsequences, there exists a subsequence, still indexed by n for

convenience because and I will work with that subsequence, so I do not want the original

sequence anymore, so there is no need to write a n, k and all that, so we will just, such that a

bounded sequence is as convergent subsequence, so .𝑣
𝑛

→ 𝑣 𝑖𝑛 𝑊𝑚+1,𝑝 (Ω)

So, we proved the last corollary, which we proved is is compact and𝑊
𝑚+1,𝑝

(Ω) → 𝑊
𝑚,𝑝

(Ω) 

we iterated it subsequently and then we have that this is compact. So, if you have a bounded

sequence there will have to be a convergence of sequence in the image and therefore since it

is just the inclusion map so we have . So, let alpha be a multi index such𝑣
𝑛

→ 𝑣 𝑖𝑛 𝑊𝑚,𝑝 (Ω)

that . So, let , then because that we know,|α| = 𝑚 + 1 ϕ ∈ 𝐷(Ω) 𝐷α𝑣
𝑛

→ 0 𝑖𝑛 𝐿𝑝(Ω),   

because vn in m plus 1 p omega goes to 0 that means for all the m plus 1th order derivatives

they have to go to 0 in , so you have𝐿𝑝(Ω)

0 =
𝑛 ∞
lim
→

(− 1)𝑚+1

Ω
∫ 𝑣

𝑛
𝐷αϕ 𝑑𝑥 = (− 1)𝑚+1

Ω
∫ 𝑣 𝐷αϕ 𝑑𝑥  .

So, this implies that 𝐷α𝑣 = 0,  ∀ |α| = 𝑚 + 1 .

and that therefore - connected again implies that . So,Ω 𝑣 ∈ 𝑃
𝑚

(Ω)



||𝑣
𝑛

− 𝑣||𝑝
𝑚+1,𝑝,Ω

= ||𝑣
𝑛

− 𝑣||𝑝
𝑚,𝑝,Ω

 + |𝑣
𝑛

− 𝑣| 𝑝
𝑚+1,𝑝,Ω

= ||𝑣
𝑛

− 𝑣||𝑝
𝑚,𝑝,Ω

 +  |𝑣
𝑛
| 𝑝

𝑚+1,𝑝,Ω
→ 0 

as (so this v n minus v m plus 1th order derivatives of v will all disappear ).𝑣 ∈ 𝑃
𝑚

(Ω),  

Now, this goes to 0 since vn converges to v in Wmp omega, so you have that and therefore

this goes to 0 and this goes to 0 by the assumption on the subsequence here and therefore

both of these go to 0 and therefore this means that and  then𝑣
𝑛

→ 𝑣 𝑖𝑛 𝑊𝑚+1,𝑝(Ω) 

, but since but in . But , that𝑣
𝑛
˙ → 𝑣̇ 𝑣̇ = 0 𝑣 ∈ 𝑃

𝑚
(Ω) 𝑊𝑚+1,𝑝(Ω)/𝑃

𝑚
(Ω) ||𝑣

𝑛
||

𝑚+1,𝑝,Ω
= 1

was our definition, assumption. So, and therefore we have a contradiction and this completes

the proof.
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corollary: so let , let bounded open connected set and1 ≤ 𝑝 < ∞ Ω ⊂ ℝ𝑁 −

continuous linear where V is a Banach space containing .Π: 𝑊𝑚+1,𝑝(Ω) → 𝑉,  𝑊𝑚+1,𝑝(Ω)

Assume , for every . So, it preserves all the polynomials. Then thereΠ(𝑃
~

) = 𝑃
~

𝑃
~

∈ 𝑃
𝑚

(Ω)

exists a such that for every , we have𝐶 > 0 𝑢 ∈ 𝑊𝑚+1,𝑝(Ω)

||𝑢 − Π𝑢||
𝑣

≤ 𝐶|𝑢|
𝑚+1,𝑝,Ω 

 .
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Proof: So, let , so𝑝
~

∈ 𝑃
𝑚

(Ω)

.||𝑢 − Π𝑢||
𝑣

= ||𝑢 + 𝑃
~

− Π(𝑢 + 𝑃)
~

||
𝑣

≤ ||𝐼 − Π|| ||𝑢 + 𝑃
~

||
𝑚+1,𝑝,Ω

.⇒ ||𝑢 − Π𝑢||
𝑣

≤ ||𝐼 − Π||  inf
𝑃
~

∈𝑃
𝑚

(Ω)
 ||𝑢 + 𝑃

~
||

𝑚+1,𝑝,Ω
 ≤ 𝐶||𝐼 − Π|| |𝑢|

𝑚+1,𝑝,Ω

So, that tells you, that completes the proof.
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Now, how is this theorem useful?



remark: if m large enough, then by Sobolev embeddings, we have

it depends for some k. So, we can assume is an𝑊𝑚+1,𝑝(Ω) → 𝐶(Ω) 𝑜𝑟 𝐶𝑘(Ω) Π

interpolation operator Lagrange, Hermite, etcetera, so that, so there will be, so these

interpolation operators means that for some degree they will reproduce polynomials as it is

and any other function they will give you another function here.

So, the above estimate, gives an estimate; above inequality gives an estimate of the

interpolation error that means u by u is the interpolated polynomial operator and then you get

the u minus pi u is the interpolation error, so this is very useful in numerical analysis,

especially in the error estimate error analysis of methods like the finite element method.
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Now, we have another consequence of this theorem which is a very important inequalities

extension of the Poincare inequality.

Theorem: (Poincare-Wirtinger inequality). So, , let bounded open1 ≤ 𝑝 < ∞ Ω ⊂ ℝ𝑁 −

connected set of class . Then there exists a constant such that for every𝐶1 𝐶 > 0 

we have𝑢 ∈ 𝑊1,𝑝(Ω),  |𝑢 − 𝑢|
0,𝑝,Ω

≤ 𝐶|𝑢|
1,𝑝,Ω

  ,  𝑤ℎ𝑒𝑟𝑒 𝑢 = 1
|Ω|

Ω
∫ 𝑢(𝑦)𝑑𝑦 .

If , then .𝑝 < 𝑁 |𝑢 − 𝑢|
0,𝑝*,Ω

≤ 𝐶|𝑢|
1,𝑝,Ω
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Proof: So, we are going to take , so this is like an interpolation operator. So, we haveΠ𝑢 = 𝑢

, it contains and m equal to 0. We have m equal to 0 and so we have𝑉 = 𝐿𝑝(Ω) 𝑊𝑚+1,𝑝(Ω) 

|𝑢 − Π𝑢|
0,𝑝,Ω

≤ 𝐶|𝑢|
1,𝑝,Ω

 .  

If then you have that𝑝 < 𝑁,  

|𝑢 − 𝑢|
0,𝑝*,Ω

≤ 𝐶||𝑢 − 𝑢||
1,𝑝,Ω

≤ 𝐶|𝑢 − 𝑢|
0,𝑝,Ω

+ 𝐶|𝑢 − 𝑢|
1,𝑝,Ω

  

.≤ 𝐶|𝑢|
1,𝑝,Ω

+ 𝐶|𝑢|
1,𝑝,Ω

= 𝐶|𝑢|
1,𝑝,Ω
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remark: Poincare inequality is valid in for any bounded open set𝑊1,𝑝
0
(Ω) Ω

Poincare-Wirtinger is bounded, open , connected and, but it is valid in . So,𝐶1(Ω) 𝑊1,𝑝 (Ω)

there is a price we have to pay with this. So, another way to state Poincare-Wirtinger is that

there exists a constant C positive, such that for all , such that we𝑢 ∈ 𝑊1,𝑝 (Ω)
Ω
∫ 𝑢𝑑𝑥 = 0,

have . So, this is the analog of the Poincare inequality, norm bounded|𝑢|
0,𝑝,Ω

≤ 𝐶|𝑢|
1,𝑝,Ω

𝐿𝑝

by , but on a condition namely that the average is 0. So, then we have this.𝐻1


