Sobolev Spaces and Partial Differential Equations
Professor S Kesavan
Department of Mathematics
Institute of Management Science
Compactness theorems — Part 3

So we were proving the various compactness theorems, namely the Rellich - Kondrachov

theorem, which said that in a bounded open set the Sobelev embeddings almost all of them

. 1, *
are compact embeddings, except one, namely when p < N, W P> L7 is not compact.
Apart from that all the rest we have compact and we proved it, for the case p bigger than n it

comes directly from the Ascoli Arzela theorem.

: .l : o
And the fact that functions are in W are Holder continuous. For p = N, We proved it using

p < N and for p < N we use the Frechet Kolmogorov theorem, which characterizes

relatively compact sets in L’ analogous to the Ascoli Arzela theorem. So, now we, these
theorems are very useful when studying partial differential equations, especially nonlinear

problems and Eigenvalue problems. And now we will see an application of this theorem.
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Theorem: Q c R" -a bounded and connected open set of class C ' Let Pm(Q) denote the

vector space of all polynomials in the variables X s X ey X OVET Q) and of degree less than or



m+1,p

equal tom. Let 1 < p < oo, let W () and let v be the equivalence class of v, in the

quotient space Wm+1'p(ﬂ) / Pm(Q) , equipped with the norm

~

m+1,p,Q - mfgepm(g) v + P”m+1,p,ﬂ )

vl

So, this is the classical norm. This norm, so the theorem is this, is equivalent to the norm

defined by v — V]
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proof. First of all, we want to show that this is well defined. So, if 1}1 = 1}2, this implies that



v, -V, € Pm(ﬂ) = |v1 -V 0= and therefore it is

1 2|m+1,p,Q = |v1|m+1,p,Q = |v2|m+1,p,9.
well defined. It does not depend on the representative which you are choosing in the quotient

space. So, that is fine. So, the norm is well defined. And secondly if you have |v|m+1 pa = 0

, so this means that v € Pm(ﬂ) because (1 is connected, so if the first derivative vanishes it is

a constant, if the second derivative vanishes is the polynomial of degree 1, if the third
derivative vanishes the polynomial degree 2 etcetera, if the m plus 1th order derivative

vanishes then it has to be a polynomial of degree m.

That means v dot is equal to the 0 element in the quotient space, so therefore, and the

converse of course is true, and therefore you have that this defines a norm. So, this |v | o0
m~rl,p,

is in fact a norm on the quotient space, so there is no problem about that. (Refer Slide Time:

6:52)
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m+1,p ~
So, now let us assume that v € W (), then you have P € Pm(Q), it is a polynomial of

degree less than equal to m, then

= <
v+ Pl o< llv+Pll

| v |m+1,p,ﬂ m+1,p,Q

and this is true for all p. And therefore this implies that

~

< inf~
lv + P|m+1,p,n < mfPer(n) [lv + P||m+1,p,ﬂ

= [lv I

m+1,p,Q

So, one-way inequality we already have. So we want to show that the reverse inequality, so to

need to show there exists a constant C positive such that the reverse is true,

m+1p .
12 o S CIV L g VEW T (@) ——ees ()

So, we will do it by contradiction, so this is the standard method of doing it and see how
compactness will come into play. So, assume the star fails. So, assume that this fails for every
c positive. So, what does it mean? That means even if I take, however large C I take there

will always be one for which the inequality will fail. So, I take C equals n for every n and

. ~ m+1,p
therefore for every n there exists v € w () such that

||U ||m+1,p,Q>n|v | m+1,p,Q
n n



. . .. . m+1p
So, we can normalize this, so normalizing there exists v EW (Q2) such that

= 1land |v | - 0Qasn — o0,
n m+1,p,Q

So, now we have to, so we assume the inequality fails for every constant and we have got a
sequence. Now, we have to get a contradiction. So, without loss of generality by choosing a

suitable representative we can assume |vn| |er 1pa < 2. So, we can choose a p tilde suitably

such that it is also the infimum is 1, so there must be 1 p tilde for which it will be less than 2,
so if we add that to this nothing changes in all these inequalities, so we can assume that norm

vn is less than equal to 2. Just by the definition of the norm in the quotient space.
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. . m+1,p . .
So, now vn is bounded in W () and so by Rellich - Kondrachov or Rellich you have,
so we will work with the subsequences, there exists a subsequence, still indexed by n for
convenience because and I will work with that subsequence, so I do not want the original

sequence anymore, so there is no need to write a n, k and all that, so we will just, such that a

Q).

. . m+1,p
bounded sequence is as convergent subsequence, so v —ovin w

m+1,p mp
So, we proved the last corollary, which we proved is W Q)->Ww  (Q) is compact and
we iterated it subsequently and then we have that this is compact. So, if you have a bounded

sequence there will have to be a convergence of sequence in the image and therefore since it

is just the inclusion map so we have v ov inw"? (). So, let alpha be a multi index such

that |a| = m + 1. So, let ¢ € D(Q), then Davn - 0in Lp(Q), because that we know,
because vn in m plus 1 p omega goes to 0 that means for all the m plus 1th order derivatives

they have to go to 0 in Lp(ﬂ), so you have

m+1 m+1

0= lim (- D" [v D'dpdx = (- 1)
Q

n— oo

[v Dacl)dx.
Q

So, this implies that Dv =0,V o) =m + 1.

and that therefore () - connected again implies that v € Pm(Q). So,



p

p
llv, — vll i 1pQ

j— —_ p —
n m+1,p,Q - ”vn Ull mp, Q2 + |vn 17|

P
I

_ _ p
- ”vn ‘U” mp,Q T |vn m+1,p,Q

as v € Pm(Q), (so this v n minus v m plus 1th order derivatives of v will all disappear ).

Now, this goes to 0 since vn converges to v in Wmp omega, so you have that and therefore

this goes to 0 and this goes to 0 by the assumption on the subsequence here and therefore

both of these go to 0 and therefore this means that v - vin Wm+1'p(Q) and then

m+1,p

v o, but v = 0 since v € Pm(ﬂ) but in W (Q)/Pm(ﬂ). But ||vn|| milpa 1, that

was our definition, assumption. So, and therefore we have a contradiction and this completes

the proof.
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corollary: soletl < p < oo, let) C R" —bounded open connected set and

m+1,p m+ 1,p(

[:w (Q) = V, continuous linear where V is a Banach space containing W Q).

Assume II(P) = P, for every P € Pm(ﬂ). So, it preserves all the polynomials. Then there

m+1,p

exists a C > 0 such that for everyu € W (Q) , we have

— <
e = |, < Clul o
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Proof: So, letp € P_(Q), so

e = Tull, = [lu+ P = O+ P, < [ = T+ Pl o

~

= [lu — Ml < || = O] infs_ |ju + P

" lyirpa < CIHE = T Jul

m+1pQ "

So, that tells you, that completes the proof.
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Now, how is this theorem useful?



remark: if m large enough, then by Sobolev embeddings, we have

m+1p(ﬂ)—> C(Q) or C* (Q) it depends for some k. So, we can assume II is an

interpolation operator Lagrange, Hermite, etcetera, so that, so there will be, so these
interpolation operators means that for some degree they will reproduce polynomials as it is

and any other function they will give you another function here.

So, the above estimate, gives an estimate; above inequality gives an estimate of the
interpolation error that means u by u is the interpolated polynomial operator and then you get
the u minus pi u is the interpolation error, so this is very useful in numerical analysis,

especially in the error estimate error analysis of methods like the finite element method.
(Refer Slide Time: 22:45)
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Now, we have another consequence of this theorem which is a very important inequalities

extension of the Poincare inequality.

Theorem: (Poincare-Wirtinger inequality). So, 1 < p < oo, let ) C R" —bounded open

1 :
connected set of class C . Then there exists a constant C > 0such that for every

Lp . -
u €W " (Q), wehave |u — ulO,p,Q < C|u|1,p,Q , where u = IQI u(y)dy .

Ifp < N, then |u — u| C|u|

0p*Q —
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Proof: So, we are going to take [lu = E, so this is like an interpolation operator. So, we have

V= LP(Q), it contains Wm+1'p(ﬂ) and m equal to 0. We have m equal to 0 and so we have

lu — Tu| < Clu|

0pQ — 1,p.0°

If p < N, then you have that

SCllu—uHLpﬂS Clu — ul +C|u—u|1’p’9

lu — uj Op

0,p*,Q

< C|u|1'p'Q + C|u|1‘p‘Q = Clull,p,n’
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remark: Poincare inequality is valid in Wl'po(ﬂ) for any bounded open set Q

Poincare-Wirtinger is bounded, open , connected C 1(Q) and, but it is valid in w' (). So,

there is a price we have to pay with this. So, another way to state Poincare-Wirtinger is that

. . 1,
there exists a constant C positive, such that for allu € W . (Q), such that [ udx = 0,we
Q

have |u| 0pa <C |u|1,p,Q . So, this is the analog of the Poincare inequality, L? norm bounded

1 . . .
by H ', but on a condition namely that the average is 0. So, then we have this.



