Sobolev Spaces and Partial Differential Equations
Professor S Kesavan
Department of Mathematics
Institute of Management Science
Compactness theorems — Part 2
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So we were studying about compactness in L’ spaces, so let me recall the theorem.

Theorem: O < R bounded open set, F a bounded set in Lp(ﬂ), 1<p< oo

Assume:



(1) for every e >0 and Q' cc Q , there exists a & > Osuch that

0<8<d®R\Q) and|t_f — flyy o < €:Vh € R" s.t. |h| < 8, Vf € F,
(i) for every € > 0, there exists Q' cc Qs.t.Vf € F
o, om < €

Then F is relatively compact in LP(Q).

So, we want to verify these two conditions when we are studying the various Sobolev

inclusions. So, for that we need to start with one more technical lemma.

Lemma: Letl < p < oand() C R" openset. Ifu € Wl'p(ﬂ),

e = uly o < Ihllul o

forallQ' cc O, h € R", |r] < d(Q, R"\Q).
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Proof: So,1 < p < o, u € D(R"), heR"

1

u(x + h) — u(x) _f —u(x + thydt = f z u(x + th)hdt = fVu(x + th). hdt
0i= 0 ol

1
= [ |t_u — ul"dx < |h|[ [ |Vu(x + th)"dxdt  [Check !]
Q' 0Q

1
= |l [ |Vu@)|’dydt
0 Q+th

So, now if you have |h| < d(Q', IRN\Q )- So this will imply that there exists "' cc Q

Q+thc Q", te(0,1).So, then
P P
et = uly 0 < IR L VU dy —==m *)

So, now we have 1 < p < o and therefore if u € Wl'p(ﬂ), then by Freidrich’s theorem

, for every

ou
axl_
Q' cc Q, that is Freidrich’s theorem. So, apply (*) to u_n because that is in d of omega d of

Rn and then pass to the limit because you are going to pass the limit in LP of omega prime.

There is no problem in either of the two integrals and then and pass to the limit. Then you get



D p 14 p
|T_hu - ul 0,p,Q' = |h|g{ |VH(Y)| dy = |h| |u| LpQ’

and now you take the pth root, then you will get exactly what you wanted.
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So now we take the case p = oo, so (' relatively compact in omega and then you choose

Q' +thc Q" c Q,t € (0,1) asbefore. And then if you take

u € Wl'oo(Q) > U € Wl'oo(Q") >ue€ Wl'q(ﬂ), q € [1,0]. And now you let q tend to

s _ <
infinity then you get |T_hu u| oo = |h| |ul Leoq

So that proves this particular expression. Now, remark.

remark: if 1 < p < oo, the converse is true. Namely, if you have the any if that is (*)

implies W p(Q) and in fact, we have seen this in the exercises.

We did this exercise. So, it does not work for p =1. So, functions satisfying (*) for p equals 1

form a larger class than Wl'l(ﬂ). Wl'l(ﬂ) anyway satisfies it, that is what we have proved

just now. But if you take the converse, if you have a star is true then it is not necessary in W

I, 1 omega, it is in some bigger space we call that, we call such functions, functions of

bounded variation and such spaces are called B. V. spaces.
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So, now we are ready to prove the important theorem of this section. Namely, Rellich -

Kondrachov.

Theorem (Rellich - Kondrachov): Let Q c R" bounded open set of class ¢' and

1 < p < o, then the following inclusions are compact.
()p < N, thenW(Q) > LU(Q),1<q<p*
(i)p =N, then W’ (Q) > LI(Q),1<q< o .

(i)p > N, then W"'(Q) > C(Q) .

Q bounded domain, then above assertion holds true if Wl'p(ﬂ) is replaced by W Ol'p(ﬂ) .
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proof: Already proved case (iii), if p is bigger than n we already saw that W 1 p omega where
all the Holder continuous functions, so if you to the unit ball then you would get those
functions are bounded and uniformly continuous and therefore you had by the Ascoli Arzela

theorem the compactness.
So, assume (1) is proved, namely for p < N, assume that we have proved all these things.

Then using that we can prove the p > N; so when p increases to N, so they call that 1 by p
star is 1 by p minus 1 by n. This implies that the p star goes to infinity. So, if q is less than

infinity there exists epsilon positive sufficiently small such that the n minus epsilon star is
bigger than q. Now, we have W omega bounded, so WLN(Q) is continuously embedded in W
1 n minus epsilon of omega because if you are in any L’ you are in any smaller LP for sets of

finite measure and now this is in Lq(ﬂ).

And this is compact by 1, because you have n minus epsilon star is bigger than q and
therefore the first assertion tells you that if you are less than the critical Sobolev, the p star is

called the critical Sobolev exponent, you lose compactness there and therefore anything less
. . . C LN .
than that it is compact and therefore this one is compact, so this implies that W™ (Q) in

Lq(ﬂ) compact for all 1 less than equal to q strictly less than infinity.

So, to prove one, we take p less than n and b closed unit ball in Wl'p(ﬂ). So, we need to
verify the two conditions of the Frechet Kolmogorov theorem, which I restated in the
beginning of this video, one and two, we have to show that for every omega prime relative
compact in omega and for every epsilon you have tau minus f is less than 0, in 0 p omega

prime is less than epsilon for h sufficiently small.

And then there is omega epsilon such that for all elements in f, so we have to verify it with
the F equals B. So, to verify one and two of Frechet Kolmogorov, first theorem above with F
equal to B, that is all that we have to do now. so, let us take one less than equal to q strictly
less than p star; then there exists alpha which belongs to 0, 1, 0 is excluded such that 1 by q

can, we have done this before, alpha by 1 plus 1 minus alpha by p star.



So, if you want 1, if you want p star then alpha must be 0, which you are excluding because

we are saying less than p star, sothenifu € B, and Q' cc Q, h € ]RN, |h] < d(Q, RN\Q)

, you have

o 1—a
|T_hu - u| 00 < |T_hu - u o0 |T_hu - u 0P

We have seen this before when we proved that after the Sobolev inequality Wl'p(]RN) isin L’

and then we wanted to show that it is in every LY for q in between p and p* and we made a
similar expression for q and then we had this inequality just because of Holder inequality, so

this is Holder. And mod tau minus h u minus u in 0 p star omega dash to the power of 1

minus alpha.
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So, now choose 0 < 6 < d(Q, ]RN\Q) such that C8" < €. So, then this implies that for all
|h] < &, we have that

|T_hu - u| 0. < €.

So, this proves the first condition in the Frechet Kolmogorov theorem.
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The second one is to show that you for there exists an €)' that for every u in B you can make it

the integral small. So, now if u € Band Q' cc Q, then you have by Holder inequality,

9
P

—1—

q q ]
[l o < 1l o g1\

1

q "
Cliull’, 1\

_1
So, you will get |u ", because of the Sobolev inequality.

oo <
0,,0\Q'

This one is less than the norm in | p star omega which is less than the norm of 1 p omega into
mod omega minus omega dash of 1 by q minus 1 by p star. So, now this of course is less than
or equal to 1, therefore we can choose Q' cc ( filling as closely as possible, as necessary.
So, you have that, you have Q here, I can take Q' very close to the boundary like this, so this
will be Q'

And therefore what is left will be very-very small, so this measure can be made as small as

you like and this implies that |u| <e€,Yuc€E B.

0,q,0\Q'
So, this is, so the two conditions are satisfied, therefore this implies that B is relatively

q
compact in Lq(Q), that is Wl'p(ﬂ) — L (Q) is compact and that proves the Frechet

Kolmogorov theorem, I mean, Rellich - Kondrachov theorem.
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remark: Proof fails forn ¢ = p *. Why does it fail forqg = p *? It fails in both the
verifications. The first verification you needed 1 by q, if you put this then you need alpha
equal to 0, so if you get alpha equal to 0, then the ¢ mod h to the alpha becomes just a
constant and therefore you cannot make it small. You cannot make it less than epsilon by

choosing delta small, therefore this step will fail.

This step will fail because you do not have this term here. Now, the second one will fail
because this omega minus omega dash is again become power 0 here and therefore this term
will fail, now this term will be lost and therefore you cannot make the mod u q omega minus

omega prime closure as small as you like, so both cases it fails so the proof fails for q equals

p
omega and in fact we can show that Wl'p(ﬂ) - L (L) not compact.

The fact that this proof failed is not proof that this is not compact, we can actually show that
this n cannot be compact, we will see examples in the exercises. So, that shows. So, now

another remark:

remark: Let 1 <p < oo, ) C R" bounded domain open set class C 1, so then
p

Wl'p(ﬂ) — L (£) is compact. So particular case, so ¢ = p in Rellich. So, this is a particular

case. So, then iterating, we get the Wm+1'p(Q) - Wm'p(ﬂ) is compact for all m > 1. So,



you can easily check this. So, this is another remark. So, now we will see some applications

of this next time.



