Sobolev Spaces and Partial Differential Equations
Professor S Kesavan
Department of Mathematics
The Institute of Mathematical Sciences
Compactness Theorems — Part 1
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We will now discuss Compactness Theorems. So, we have been seeing several Sobolev
embeddings, so we have Sobolev spaces embedded in Lq spaces or spaces of continuous or
differentiable functions. We want to know if these mapping, inclusion mappings are compact.

So, what is a compact mapping?

compact mapping: So, V, W Banach and F:V — W continuous, and we say that F is

compact if it maps bounded sets in V onto relatively compact sets in W.

That means the closure should be compact, then you say it's relatively compact. So, what is
the use of compact mapping? So, if you for instance have a bounded sequence in V then the
image f of V N will be a relatively, in a relatively compact set so it will have a convergence
subsequence in W. Therefore, that is the use of a compact mapping so you can have

convergent subsequences in the image.

Now, all the mappings which we are looking at are linear and therefore it is enough to look at
the unit ball and see if the image is going to be relatively compact, which is enough for us in

most of the cases.



So, we already saw for instance if I = (0, 1), then you have Wl'p(l) - C (7) and this also

1

1—
had that |u(x) — u(y)| < C|u|1p1|x -yl 7.
And therefore, if you have the unit ball so norm u 1 P I is less than or equal to 1 and therefore
for all u x minus u y you will have Holder continuity and this will show that these are equi
continuous. And then of course because it is a bounded linear map its set will also be
bounded, bounded and equi continuous by Ascoli-Arzela theorem will say that this is

compact. So, this inclusion was compact and that is how we proved it.

Now, we want to see which of the maps which we have now proved in the Sobolev
embedding theorems are compact. Now, a quick short introspection will tell you that this will

not work, so will not work for unbounded domains. So, let us take an example:

example: so you take 1 = R, I = (0,1) and you take Ij = (j,j + 1). And now you take
f € CI(R), supp(f) < (0,1). And you define fj(x) = f(x — j) and therefore this means
that supp(fj) c Ij. In fact, so you just take, so this is 0, this is 1, this is j, this is j plus 1. So,

if you took a function f whose graph is like this then the graph of f j will be just you move
this function forward and or backward depending where the interval is and then you will get

the function, so this is f and this is .
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So, because of the translation invariance of the Lebesgue measure, now {fj} is clearly

bounded in Lq(R) for any q and therefore and all the fj € Wl’p(Q) and bounded there. In

fact, the norms are all the same because you have just translated them. However, if you take

1
_ <o .
And therefore, no convergent subsequence because all the functions when I is not equal to j
they are at the same distance apart so you cannot have a Cauchy subsequence and

consequently no convergent subsequence. Therefore, Wl'p(R) - Lq(]R) not compact. So,
henceforth we will always assume that omega is bounded. So, this is what we are going to

look at.
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Now, first of all, let us take the case p > N, when P is bigger than N then we know that if
Wl'p(ﬂ) - C (ﬁ). Again you have

N

P

1_
[uG) — uO)| < Clul, , Ix = |

So, the same argument we can say, so if B is the closed unit ball in Wl'p(Q). So, then

<
[|ul |1,p,Q < 1 and therefore

N

1—
lu@) —u| < Clx =yl ", Vu€B,



and therefore it is again equi-continuous and by the continuous inclusion of W 1 P in C
omega bar it is also uniformly bounded. So, uniformly bounded equi continuous, continuous

functions on a compact set, omega is bounded, so omega closure this compact. Therefore,

again by Ascoli-Arzela, Wl'p(ﬂ) - C (5) is compact.
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So, analog of Ascoli-Arzela theorem for compactness, for relative compactness in L’ spaces.

And this is the Frechet-Kolmogorov theorem which we will now prove.

Theorem: O ¢ R bounded open set, Q' cc (), Fabounded setin LPomega 1 < p < oo,

Assume that for every € > 0, there exists a & > 0 such that
. . N
16 <dQ,R\Q).
(ii)vh € R" s.t. |h| < 8, Vf € F,

It f - flO,p,Q' <€, wheret f(x)=1t(x+h).

Then F |Q, is relatively compact in L’ ah.
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proof: So, Q bounded, so it has finite measure and therefore F is also bounded in Ll(Q). So if

you take

1?= {]?: f €F}, (]?is extension by zero outside (1)

~ N
Then F is bounded in Lp(]Rl ) and in Ll(RN). So, lete > 0,8 > 0 as in the statement of the

theorem.
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Step 1. So, let € 10, P =P mollifiers. So fis in F and therefore

m



b *f@) —f@I< [ 1fec =y = f@lp, »)dy

lyl<e
We have used the fact that integral rho m y dy equal to 1, because this ftilde x is a constant in
this integral it would have come out and rho integral tho m d of y is 1 and now I have taken

the modulus therefore I can write this. This is fine if 1 is less, P equals 1. I am happy with this

if P is bigger than 1, 1 less than P less than infinity then P dash is the conjugate exponent. So,

1 1

1 by P plus 1 by P dash equal to 1. So, then I can write P = pm?pn? and then substitute

here.

So, now I am going to use the Holder inequality. So,

b *f@) —f@I< ([ If@x =y - f@p dy)”

lylse

Since, again since, integral rho m equal to 1, so this is Holder. So, this inequality is true for

all p. So, p equals 1 is here and for other p’s we have proved this here.
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So, we have now let € < 8. So,

0, = Tope s I 0,0V 1fG = 9) = Fldxdy

<
lyl<e



So,ifx € @, and |y| =€ < & < d(Q, RN\Q):>}J(x —y) = f(x — y)and
f(x) = f(x) and then
Y PN S p
JIfG =) = fldx = o f = 17,

~ ~

So, and that we know is in epsilon power P. So, this |pm *f—f |p 0p0 < €. Therefore

So, this is what we have.
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Step 2: let us take Hm = {pm * f|Q, : f € F}.Let m be fixed, then

~

lp,, * fl

< <
m wr" = |pm|0'w‘RN |f|0,1,RN <C

0, m

) N
Now, if x X, € R, then you have

(6, * PG = (0, * ACPL < Ip I o ]l =] SC Jx, = x

m'0,1,R 2|

So, this is nothing but the mean value theorem I am applying rho m of x 1 minus rho m of x 2
and therefore you have rho, we will have rho m of x 1 minus y minus rho 2 of x minus y and

that is less than or equal to mod x 1 minus x 2 times the maximum of the derivatives.

Again, so this is less than equal to some, this is again bounded in L 1 of RN and therefore this
is again some C m dash mod x 1 minus x 2. Again, C m and C m dash may be very large for
each m but m is fixed and so we do not care, because these functions become very steep so

this comes from the mean value theorem.

So, it follows from these two relations that H_ is bounded equicontinuous in C (ﬁ) and
therefore you have that it is relatively compact, again just Ascoli-Arzela. And therefore, this
implies relatively compact in C (E) and implies relatively compact in LP(Q'), because if
something is compact with respect to L” norm it is automatically compact with respect to the

. p . . .
omega prime L~ norm also, since ('is a finite measure and therefore we have no problems.



(Refer Slide Time: 23:05)

Y%XEJ ey 'Lg«é?}'lt\)l X \'{,\_’f \?‘j‘.‘&" (LA b5 C\;M—’J
=c

T
W

J (P, Vo Than Y
=y H, o bdd Reulad )
i i tﬂ)"“ NPTEL
= vl gy Choeals = Aepd. i L)
= Wb el
A v 1Py
SE} £, Pl D-t,m--ﬂ-nri an L0 oy T B
Cmahauq.ﬂ%a(gmi o S lolls fud. <&

TR T - i rlb*m:.

9]
5

~ A B
\Sﬂ'glp;,h‘ i

F
L

NPTEL

g2 H, = é&f%'\m { %63(--}1
Lar l"niu_&.r.c_&

\3*‘\*; ln,-hﬁf’ = \%“\0#51“ 1; ||°-‘1‘1” = Q.
e

———
sC, 1
;._‘,,Lg-nz"

s - s |
@4 ¢) e 'Lg'ahf},u‘)l < \%\’-‘:'\r“ﬁﬂ\l.pﬂ ) <€
=C

Step 3: so let any € > 0 be given, Hm is relatively compact in L’ Qh =>Hm can be covered

by a finite number of balls of radius less than €. Now, given any f you have an element rho

epsilon star element in f m such that f minus rho m f'tilde rho m, rho m star f tilde minus f is

less than epsilon in norm, in the Lp(Q') norm.
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And therefore, this implies that F can be covered by the same number of balls with the same

centers and of radius 2€ in L” (Q2"). And therefore F| o is totally bounded = relatively compact

in Lp(Q'). So, this proves this theorem completely.

(Refer Slide Time: 25:19)

o

Qo:: Candun wed - vl sl =
A =3 b, o L, S
3f[N oy b8 D bag ol ;}

NPTEL
'_1_1_13. Qe P’Dm Orlﬁ k- fpew
UIY gy emd Vsleem, 35 ni o<t <dn BN o4
l’E_‘r_; '—;]QP,N <£
ek, W<s e
B New, 3 v grad » cen, ox Nfedh

1“,,\& -1 "-.ﬁ.
Tl Feon weboghoin Lin,
s s 80 wrm ]

*

But we are not interested in Lp(ﬂ'), we want compactness condition in LP(Q). So, we want to

use this theorem to prove the next theorem.

Theorem: Q c R" bounded open set, F a bounded set in Lp(Q), 1 <p< oo



Assume:

(1) for every e >0 and Q' cc Q , there exists a & > Osuch that

0<8<d®R\Q) and|t_f — flyy o < €:Vh € R" s.t. |h| < 8, Vf € F,
(i1) for every € > 0, there exists ' cc Qst. Vf € F

Then F is relatively compact in Lp(ﬂ).
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proof: so let e > 0 and (1" as in condition (ii) above. So, by (i), F IQ, is relatively compact in
LP(Q'), that is the previous theorem. So, F| o can be covered by Uka 1B Q,(gl,, €) . Now, you
consider g, extension by 0 = g, € Lp(ﬂ). Now, so if you take f € F, there exists a gi such

that |f — gi| 0p.Q < ¢, this is what we have from this thing.

So, now if you take

o _ P ~p _p L p
- Q O\Q'
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So, you have that |f — gi| 090 <2"€ < 2.

So, we have that F c UkalBQ,(gi, 2€) . And therefore, again, this shows that capital F is
totally bounded in Lp(ﬂ) = F isrelatively compact.

So, this proves this. So, our next step is to use this lemma and try to show the compactness

of various inclusions in the Sobolev embeddings. So, we have established what is necessary.



