
Sobolev Spaces and Partial Differential Equations
Professor S Kesavan

Department of Mathematics
The Institute of Mathematical Sciences

Compactness Theorems – Part 1

(Refer Slide Time: 0:21)

We will now discuss Compactness Theorems. So, we have been seeing several Sobolev

embeddings, so we have Sobolev spaces embedded in Lq spaces or spaces of continuous or

differentiable functions. We want to know if these mapping, inclusion mappings are compact.

So, what is a compact mapping?

compact mapping: So, V, W Banach and continuous, and we say that is𝐹: 𝑉 → 𝑊 𝐹

compact if it maps bounded sets in V onto relatively compact sets in W.

That means the closure should be compact, then you say it's relatively compact. So, what is

the use of compact mapping? So, if you for instance have a bounded sequence in V then the

image f of V N will be a relatively, in a relatively compact set so it will have a convergence

subsequence in W. Therefore, that is the use of a compact mapping so you can have

convergent subsequences in the image.

Now, all the mappings which we are looking at are linear and therefore it is enough to look at

the unit ball and see if the image is going to be relatively compact, which is enough for us in

most of the cases.



So, we already saw for instance if then you have and this also𝐼 = (0, 1) ,  𝑊1,𝑝(𝐼) → 𝐶(𝐼)

had that .|𝑢(𝑥) − 𝑢(𝑦)| ≤ 𝐶|𝑢|
1,𝑝,𝐼

|𝑥 − 𝑦|
1− 1

𝑝'

And therefore, if you have the unit ball so norm u 1 P I is less than or equal to 1 and therefore

for all u x minus u y you will have Holder continuity and this will show that these are equi

continuous. And then of course because it is a bounded linear map its set will also be

bounded, bounded and equi continuous by Ascoli-Arzela theorem will say that this is

compact. So, this inclusion was compact and that is how we proved it.

Now, we want to see which of the maps which we have now proved in the Sobolev

embedding theorems are compact. Now, a quick short introspection will tell you that this will

not work, so will not work for unbounded domains. So, let us take an example:

example: so you take and you take . And now you takeΩ = ℝ,  𝐼 = (0, 1) 𝐼
𝑗

= (𝑗, 𝑗 + 1)

. And you define and therefore this means𝑓 ∈ 𝐶1(ℝ),  𝑠𝑢𝑝𝑝(𝑓) ⊂ (0, 1) 𝑓
𝑗
(𝑥) = 𝑓(𝑥 − 𝑗) 

that . In fact, so you just take, so this is 0, this is 1, this is j, this is j plus 1. So,𝑠𝑢𝑝𝑝(𝑓
𝑗
) ⊂ 𝐼

𝑗

if you took a function f whose graph is like this then the graph of f j will be just you move

this function forward and or backward depending where the interval is and then you will get

the function, so this is f and this is f j.
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So, because of the translation invariance of the Lebesgue measure, now is clearly{𝑓
𝑗
}

bounded in for any q and therefore and all the and bounded there. In𝐿𝑞(ℝ ) 𝑓
𝑗

∈ 𝑊1,𝑝(Ω) 

fact, the norms are all the same because you have just translated them. However, if you take

|𝑓
𝑖

− 𝑓
𝑗
|

0,𝑞,ℝ
≤ 2

1
𝑞 |𝑓|

0,𝑞,𝐼
  ,   𝑖 ≠ 𝑗 .

And therefore, no convergent subsequence because all the functions when I is not equal to j

they are at the same distance apart so you cannot have a Cauchy subsequence and

consequently no convergent subsequence. Therefore, not compact. So,𝑊1,𝑝(ℝ) → 𝐿𝑞(ℝ) 

henceforth we will always assume that omega is bounded. So, this is what we are going to

look at.
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Now, first of all, let us take the case , when P is bigger than N then we know that if𝑝 > 𝑁

. Again you have𝑊1,𝑝(Ω) → 𝐶(Ω)

|𝑢(𝑥) − 𝑢(𝑦)| ≤ 𝐶|𝑢|
1,𝑝,Ω

 |𝑥 − 𝑦|
1− 𝑁

𝑝    .

So, the same argument we can say, so if B is the closed unit ball in . So, then𝑊1,𝑝(Ω)

and therefore||𝑢||
1,𝑝,Ω

≤ 1 

|𝑢(𝑥) − 𝑢(𝑦)| ≤ 𝐶 |𝑥 − 𝑦|
1− 𝑁

𝑝    ,    ∀𝑢 ∈ 𝐵 ,



and therefore it is again equi-continuous and by the continuous inclusion of W 1 P in C

omega bar it is also uniformly bounded. So, uniformly bounded equi continuous, continuous

functions on a compact set, omega is bounded, so omega closure this compact. Therefore,

again by Ascoli-Arzela, is compact.𝑊1,𝑝(Ω) → 𝐶(Ω)
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So, analog of Ascoli-Arzela theorem for compactness, for relative compactness in spaces.𝐿𝑝

And this is the Frechet-Kolmogorov theorem which we will now prove.

Theorem: bounded open set, , a bounded set in LP omega .Ω ⊂ ℝ𝑁 Ω' ⊂⊂ Ω 𝐹 1 ≤ 𝑝 < ∞

Assume that for every there exists a such thatϵ > 0,  δ > 0 

(i) .δ < 𝑑(Ω', ℝ𝑁\Ω )

(ii) ∀ℎ ∈ ℝ𝑁  𝑠. 𝑡.  |ℎ| < δ ,  ∀𝑓 ∈ 𝐹,  

|τ
−ℎ

𝑓 − 𝑓|
0,𝑝,Ω'

< ϵ ,       𝑤ℎ𝑒𝑟𝑒  τ
−ℎ

𝑓(𝑥) = τ(𝑥 + ℎ) .

Then is relatively compact in𝐹|
Ω'

𝐿𝑝(Ω').
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proof: So, bounded, so it has finite measure and therefore F is also bounded in So ifΩ 𝐿1(Ω).

you take

𝐹
~

= {𝑓
~

: 𝑓 ∈ 𝐹}   ,    (𝑓
~

 𝑖𝑠 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑏𝑦 𝑧𝑒𝑟𝑜 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 Ω)

Then is bounded in and in . So, let , as in the statement of the𝐹
~

𝐿𝑝(ℝ
𝑁

) 𝐿1(ℝ𝑁) ϵ > 0 δ > 0 

theorem.
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Step 1. So, let , mollifiers. So f is in F and thereforeϵ
𝑚

↓ 0 ρ
𝑚

= ρ
ϵ

𝑚



|ρ
𝑚

* 𝑓
~

(𝑥) − 𝑓
~

(𝑥)| ≤
|𝑦|≤ϵ

𝑚

∫ |𝑓
~

(𝑥 − 𝑦) − 𝑓
~

(𝑥)|ρ
𝑚

(𝑦)𝑑𝑦 

We have used the fact that integral rho m y dy equal to 1, because this f tilde x is a constant in

this integral it would have come out and rho integral rho m d of y is 1 and now I have taken

the modulus therefore I can write this. This is fine if 1 is less, P equals 1. I am happy with this

if P is bigger than 1, 1 less than P less than infinity then P dash is the conjugate exponent. So,

1 by P plus 1 by P dash equal to 1. So, then I can write and then substituteρ
𝑚

= ρ
𝑚

1
𝑝 ρ

𝑚

1
𝑝'

here.

So, now I am going to use the Holder inequality. So,

|ρ
𝑚

* 𝑓
~

(𝑥) − 𝑓
~

(𝑥)| ≤ (
|𝑦|≤ϵ

𝑚

∫ |𝑓
~

(𝑥 − 𝑦) − 𝑓
~

(𝑥)|𝑝ρ
𝑚

(𝑦)𝑑𝑦)
1
𝑝  

Since, again since, integral rho m equal to 1, so this is Holder. So, this inequality is true for

all p. So, p equals 1 is here and for other p’s we have proved this here.
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So, we have now let . So,ϵ
𝑚

< δ

|ρ
𝑚

* 𝑓
~

− 𝑓
~

|𝑝
0,𝑝,Ω'

≤
|𝑦|≤ϵ

𝑚

∫ ρ
𝑚

(𝑦)
Ω'
∫ |𝑓

~
(𝑥 − 𝑦) − 𝑓

~
(𝑥)|𝑝𝑑𝑥𝑑𝑦



So, if and and𝑥 ∈ Ω',  |𝑦| ≤ ϵ
𝑚

< δ < 𝑑(Ω', ℝ𝑁\Ω ) ⇒ 𝑓
~

(𝑥 − 𝑦) = 𝑓(𝑥 − 𝑦)

and then𝑓
~

(𝑥) = 𝑓(𝑥)

Ω'
∫ |𝑓

~
(𝑥 − 𝑦) − 𝑓

~
(𝑥)|𝑝𝑑𝑥 = |τ

𝑦
𝑓 − 𝑓|𝑝

0,𝑝,Ω'

So, and that we know is in epsilon power P. So, this Therefore|ρ
𝑚

* 𝑓
~

− 𝑓
~

|𝑝
0,𝑝,Ω'

< ϵ𝑝 .

|ρ
𝑚

* 𝑓
~

− 𝑓
~

|
0,𝑝,Ω'

< ϵ  .

So, this is what we have.
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Step 2: let us take . Let  m be fixed, then𝐻
𝑚

= {ρ
𝑚

* 𝑓
~

|
Ω'

  :  𝑓 ∈ 𝐹}

|ρ
𝑚

* 𝑓
~

|
0,∞,ℝ𝑁 ≤ |ρ

𝑚
|

0,∞,ℝ𝑁   
|𝑓
~

|
0,1,ℝ𝑁 ≤ 𝐶

𝑚

Now, if then you have𝑥
1
, 𝑥

2
∈ ℝ𝑁 ,  

      |(ρ
𝑚

* 𝑓
~

)(𝑥
1
) − (ρ

𝑚
* 𝑓

~
)(𝑥

2
)| ≤ |ρ

𝑚
|

0,1,ℝ𝑁   
|𝑓
~

|
1,∞,ℝ𝑁 |𝑥

1
− 𝑥

2
| ≤ 𝐶'

𝑚
|𝑥

1
− 𝑥

2
|

So, this is nothing but the mean value theorem I am applying rho m of x 1 minus rho m of x 2

and therefore you have rho, we will have rho m of x 1 minus y minus rho 2 of x minus y and

that is less than or equal to mod x 1 minus x 2 times the maximum of the derivatives.

Again, so this is less than equal to some, this is again bounded in L 1 of RN and therefore this

is again some C m dash mod x 1 minus x 2. Again, C m and C m dash may be very large for

each m but m is fixed and so we do not care, because these functions become very steep so

this comes from the mean value theorem.

So, it follows from these two relations that is bounded equicontinuous in and𝐻
𝑚

 𝐶(Ω')

therefore you have that it is relatively compact, again just Ascoli-Arzela. And therefore, this

implies relatively compact in and implies relatively compact in because if𝐶(Ω') 𝐿𝑝(Ω'),  

something is compact with respect to norm it is automatically compact with respect to the𝐿∞

omega prime norm also, since is a finite measure and therefore we have no problems.𝐿𝑝 Ω' 
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Step 3: so let any be given, is relatively compact in can be coveredϵ > 0 𝐻
𝑚

𝐿𝑝(Ω') ⇒𝐻
𝑚

by a finite number of balls of radius less than . Now, given any f you have an element rhoϵ

epsilon star element in f m such that f minus rho m f tilde rho m, rho m star f tilde minus f is

less than epsilon in norm, in the norm.𝐿𝑝(Ω')
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And therefore, this implies that F can be covered by the same number of balls with the same

centers and of radius in . And therefore is totally bounded relatively compact2ϵ 𝐿𝑝(Ω') 𝐹|
Ω'

 ⇒

in . So, this proves this theorem completely. 𝐿𝑝(Ω')
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But we are not interested in , we want compactness condition in . So, we want to𝐿𝑝(Ω') 𝐿𝑝(Ω)

use this theorem to prove the next theorem.

Theorem: bounded open set, a bounded set in , .Ω ⊂ ℝ𝑁 𝐹 𝐿𝑝(Ω) 1 ≤ 𝑝 < ∞



Assume:

(i) for every and , there exists a such thatϵ > 0 Ω' ⊂⊂ Ω δ > 0 

and ,0 < δ < 𝑑(Ω', ℝ𝑁\Ω ) |τ
−ℎ

𝑓 − 𝑓|
0,𝑝,Ω'

< ϵ ∀ℎ ∈ ℝ𝑁  𝑠. 𝑡.  |ℎ| < δ ,  ∀𝑓 ∈ 𝐹,  

(ii) for every , there exists s.t.ϵ > 0 Ω' ⊂⊂ Ω ∀𝑓 ∈ 𝐹

.|𝑓|
0,𝑝,Ω\Ω'

< ϵ 

Then is relatively compact in𝐹 𝐿𝑝(Ω).
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proof: so let as in condition (ii) above. So, by (i), is relatively compact inϵ > 0 𝑎𝑛𝑑 Ω' 𝐹|
Ω'

, that is the previous theorem. So, can be covered by Now, you𝐿𝑝(Ω') 𝐹|
Ω'

∪𝑘
𝑗=1

𝐵
Ω'

(𝑔
𝑖
, ϵ) .

consider extension by 0 . Now, so if you take there exists a gi such𝑔
𝑖
 

~
⇒  𝑔

𝑖
 

~
∈ 𝐿𝑝(Ω) 𝑓 ∈ 𝐹,  

that , this is what we have from this thing.|𝑓 − 𝑔
𝑖
|

0,𝑝,Ω'
< ϵ

So, now if you take

|𝑓 − 𝑔
𝑖

~
|𝑝

0,𝑝,Ω
=

Ω'
∫ |𝑓 − 𝑔

𝑖
|𝑝 +

Ω\Ω'
∫ |𝑓 − 𝑔

𝑖

~
|𝑝 < ϵ𝑝 + ϵ𝑝 = 2ϵ𝑝
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So, you have that .|𝑓 − 𝑔
𝑖

~
|

0,𝑝,Ω
< 2

1
𝑝 ϵ < 2ϵ

So, we have that . And therefore, again, this shows that capital F is𝐹 ⊂ ∪𝑘
𝑗=1

𝐵
Ω'

(𝑔
𝑖

~
, 2ϵ) 

totally bounded in is relatively compact.𝐿𝑝(Ω) ⇒ 𝐹

So, this proves this. So, our next step is to use this lemma and try to show the compactness

of various inclusions in the Sobolev embeddings. So, we have established what is necessary.


