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We are looking at Embedding theorems. So, we had that

𝑊1,𝑝(ℝ𝑁) → 𝐿𝑝*(ℝ𝑁),   𝑝 < 𝑁,  1
𝑝* = 1

𝑝 − 1
𝑁  .

.→ 𝐿𝑞(ℝ𝑁) ,   𝑞 ∈ [𝑝, 𝑝 *]

.→ 𝐿𝑞(ℝ𝑁) ,   𝑞 ∈ [𝑝, ∞],    𝑝 = 𝑁

So, now we want to look at the case when . So, this is the third case which we want to𝑝 > 𝑁

do and here we state the theorem for this.

Theorem: So, let Then we have the continuous inclusion𝑁 < 𝑝 < ∞ .

𝑊1,𝑝(ℝ𝑁) → 𝐿∞(ℝ𝑁) .

There exists a constant such that for all , we have and𝐶 = 𝐶(𝑁, 𝑝) > 0 𝑢 ∈ 𝑊1,𝑝(ℝ𝑁)

almost all that means except for a set of measures 0 all pairs of points you will𝑥, 𝑦 ∈ ℝ𝑁

have the following inequality,



.|𝑢(𝑥) − 𝑢(𝑦)| ≤ 𝐶|𝑢|
1,𝑝,ℝ𝑁|𝑥 − 𝑦|

1− 𝑁
𝑝

The same conclusions hold if is replaced by or by of class with a boundedℝ𝑁 ℝ
+

𝑁 Ω 𝐶1  

boundary. The analogous result is also true for for any open set . (Refer Slide𝑊1,𝑝(Ω) Ω

Time: 4:34)

proof: Enough to prove for as I explained just now extension operators will take care ofℝ𝑁

the rest of the cases.

So, step 1: Let . So, let Q be a cube with edges parallel to the coordinate axis. Assume𝐷(ℝ𝑁)

0 is in Q and let x belong to Q. So,

𝑢(𝑥) − 𝑢(0) =
0

1

∫ 𝑑
𝑑𝑡 𝑢(𝑡𝑥)𝑑𝑡.

So, let be the average mean or average of u over Q.𝑢



(Refer Slide Time: 6:43)

So,

𝑢 = 1
|𝑄|

𝑄
∫ 𝑢(𝑦)𝑑𝑦.

So, then 𝑢 − 𝑢(0) = 1
|𝑄|

𝑄
∫

0

1

∫
𝑖=1

𝑁

∑ 𝑥
𝑖

∂𝑢
∂𝑥

𝑖
(𝑡𝑥)𝑑𝑡𝑑𝑥

So, now |𝑢 − 𝑢(0)| ≤ 𝑟
|𝑄|

𝑄
∫

𝑖=1

𝑁

∑
0

1

∫ | ∂𝑢
∂𝑥

𝑖
(𝑡𝑥)|𝑑𝑡𝑑𝑥 == 1

𝑟𝑁−1
0

1

∫
𝑄
∫

𝑖=1

𝑁

∑ | ∂𝑢
∂𝑥

𝑖
(𝑡𝑥)|𝑑𝑡𝑑𝑥

[as ]|𝑄|= 𝑟𝑁

[putting ]= 1

𝑟𝑁−1
0

1

∫
𝑡𝑄
∫

𝑖=1

𝑁

∑ | ∂𝑢
∂𝑥

𝑖
(𝑦)|𝑡𝑁𝑑𝑡𝑑𝑦 𝑡𝑥 = 𝑦
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Now, And therefore, you have that and now you apply Holder to the𝑡𝑄 ⊂ 𝑄   (0 ≤ 𝑡 ≤ 1).  

inner integral.

𝑡𝑄
∫ | ∂𝑢

∂𝑥
𝑖

(𝑦)|𝑑𝑦 ≤ (
𝑄
∫ | ∂𝑢

∂𝑥
𝑖

(𝑦)|𝑝)
1
𝑝 |𝑡𝑄|

1
𝑝'    ,      1

𝑝 + 1
𝑝' = 1 .

so this is what we have.

(Refer Slide Time: 12:10)

So, now if you substitute that in the previous inequality you get mod u bar minus u 0 is less

than equal to, so you will get mod u 1, P Q because I have sigma i equals 1 to all of the



powers will come there. And then by R power N minus 1 is already there and then I will get

what is mod of t Q.

So, mod of t Q equals t power N R power N, so and then I am going to take 1 by P prime of

that so R power N by P prime will come there and then integral 0 to 1 of dt will be t power N

by P minus N because there is a t power minus N already. Now, I will get t power N by P

prime, sorry, N by P prime minus N and that is equal to so if I R power N minus, so R power

N by P prime minus N will give you N times 1 by P prime minus 1 which is minus 1 by P, so

that is equal to R power 1 minus N by P.

If you simplify this expression here you get R power 1 minus N by P and then this integral if

I integrate this will just give you 1 minus N by P again using the fact that 1 by P plus 1 by P

prime equal to N and then mod u 1, P, Q. So, we have a nice relationship.
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Now, by translation this is valid for any such cube Q and any x in Q. So, you have that for

any such Q you have

|𝑢 − 𝑢(𝑥)| ≤ 𝑟
1− 𝑁

𝑝

1− 𝑁
𝑝

|𝑢|
1,𝑝,𝑄

  .

Now, if x and y belong to Q you apply it both to x and to y and then you get by the triangle

inequality .|𝑢(𝑦) − 𝑢(𝑥)| ≤ 2𝑟
1− 𝑁

𝑝

1− 𝑁
𝑝

|𝑢|
1,𝑝,𝑄
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Now, given We can always find Q containing them and of side𝑥, 𝑦 ∈ ℝ𝑁 ,  𝑟 = 2|𝑥 − 𝑦|.

And therefore, you have that substituting that you get

.|𝑢(𝑦) − 𝑢(𝑥)| ≤ 𝐶|𝑥 − 𝑦|
1− 𝑁

𝑝   ,   ∀𝑥, 𝑦 ∈ℝ𝑁

So, this is for almost for every, for all x, y in . So, this is for . So, ifℝ𝑁 𝑢 ∈ 𝐷(ℝ𝑁)

then there exists such that . And for a𝑢 ∈ 𝑊1,𝑝(ℝ
𝑁

)  ,  𝑢
𝑛

∈ 𝐷(ℝ𝑁) 𝑢
𝑛

→ 𝑢  𝑖𝑛 𝑊1,𝑝(ℝ
𝑁

)

subsequence pointwise almost everywhere. So, then that will imply for all . So𝑢 ∈ 𝑊1,𝑝(ℝ
𝑁

) 

you apply it to u n and then you pass to the limit you get

.|𝑢(𝑦) − 𝑢(𝑥)| ≤ 𝐶|𝑥 − 𝑦|
1− 𝑁

𝑝   ,   𝑎. 𝑒.  𝑥, 𝑦 ∈ℝ𝑁

(Refer Slide Time: 17:52)

step 2: if , you have𝑢 ∈ 𝐷(ℝ𝑁)

.|𝑢(𝑥)| ≤ |𝑢(0)| + 𝐶|𝑢|
1,𝑝,𝑄

≤ 𝐶'||𝑢||
1,𝑝,𝑄

≤ 𝐶'||𝑢||
1,𝑝,ℝ𝑁

And now again true for by density, is dense and therefore you have this.𝑢 ∈ 𝑊1,𝑝(ℝ
𝑁

) 𝐷(Ω) 

So, this implies that ) .𝑊1,𝑝(ℝ𝑁 → 𝐿∞(ℝ𝑁)

So, this completely proves the theorem here.
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So, now you consider Now, if𝑢 ∈ 𝑊2,𝑝(ℝ
𝑁

) ⇒ 𝑢, ∂𝑢
∂𝑥

𝑖
∈ 𝑊1,𝑝(ℝ𝑁) ,   1 ≤ 𝑖 ≤ 𝑁. 𝑝 < 𝑁,

then 𝑢,  ∂𝑢
∂𝑥

𝑖
∈ 𝐿𝑝*(ℝ𝑁) ⇒ 𝑢 ∈ 𝑊1,𝑝*(ℝ𝑁) .

Assume . So, when will this happen?𝑝 *< 𝑁

1
𝑁 < 1

𝑝* = 1
𝑝 − 1

𝑁 ⇒ 𝑝 < 𝑁
2 ⇒ 𝐿(𝑝*)* = 𝐿𝑝**(ℝ𝑁) .

.1
𝑝** = 1

𝑝 − 2
𝑁

So, we can now iterate this to any positive integer and then we can iterate all the theorems.
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So, by iterating arguments in the previous preceding theorems we get the following.

Theorem: Let an integer. Let .𝑚 ≥ 1 1 ≤ 𝑝 < ∞

(i) If then .1
𝑝 − 𝑚

𝑁 > 0 ,  𝑊𝑚,𝑝(ℝ𝑁) → 𝐿𝑞(ℝ𝑁),   1
𝑞 = 1

𝑝 − 𝑚
𝑁  

(ii) If then1
𝑝 − 𝑚

𝑁 = 0 ,  𝑊𝑚,𝑝(ℝ𝑁) → 𝐿𝑞(ℝ𝑁),   ∀𝑞 ∈ [𝑝, ∞) .  

(iii) If then1
𝑝 − 𝑚

𝑁 < 0 ,  𝑊𝑚,𝑝(ℝ𝑁) → 𝐿∞(ℝ𝑁).

In the last case, let k be the integral part and be the fractional part of . Then thereθ 𝑚 − 𝑁
𝑝

exists 𝐶 > 0,  𝑠. 𝑡.  ∀𝑢 ∈ 𝑊𝑚,𝑝(ℝ𝑁)  ,  𝑤𝑒 ℎ𝑎𝑣𝑒 

|𝐷α𝑢|
0,∞,ℝ𝑁 ≤ 𝐶||𝑢||

𝑚,𝑝,ℝ𝑁 ,   ∀ |α| ≤ 𝑘 .

For almost all 𝑥, 𝑦 ∈ ℝ𝑁 𝑎𝑛𝑑 |α| = 𝑘 ,  

|𝐷α𝑢(𝑥) − 𝐷α𝑢(𝑦)| ≤ 𝐶||𝑢||
𝑚,𝑝,ℝ𝑁|𝑥 − 𝑦|θ  .

In particular, and the k-th derivatives are Holder continuous.𝑊𝑚,𝑝(ℝ𝑁) → 𝐶𝑘(ℝ𝑁)
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The previous derivatives will be actually Lipschitz continuous for all Same results𝑚 > 𝑁
𝑝 .

true for or of class because you are iterating the condition for the first derivativeℝ
+

𝑁 Ω 𝐶𝑚,

you need , so now for successive derivatives you have to include a bounded boundary and𝐶1

for for any open set omega in .𝑊
0

𝑚,𝑝(Ω) ℝ𝑁

remark: if and , then it implies that is Lipschitz continuous because𝑚 > 𝑁
𝑝 |α| < 𝑘 𝐷α𝑢 

any higher, the first derivative of is in , it is bounded. And therefore, will be𝐷α𝑢 𝐿∞ 𝐷α𝑢

automatically Lipschitz continuous. It is only when you come to alpha equals mod k you



cannot say anything about the next derivative and therefore you only have Holder continuous,

so that is just from the mean value theorem which says if the derivative is bounded then the

function is Lipschitz continuous. So, this completes the study of the embedding theorems.

Our next aim is to see which of these embeddings are going to be compact.


