Sobolev Spaces and Partial Differential Equations
Professor S Kesavan
Department of Mathematics
The Institute of Mathematical Sciences
Imbedding theorems Case p greater than N - Part 3
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We are looking at Embedding theorems. So, we had that

p p N

N
> LR, g€ [pp*.

w”P®RY - P ®RY), p< N, =L

SL'®RY), gepoo], p=N.

So, now we want to look at the case when p > N. So, this is the third case which we want to
do and here we state the theorem for this.

Theorem: So, let N < p < oo. Then we have the continuous inclusion

w®R" - L°(R").

There exists a constant C = C(N,p) > Osuch that for all u € Wl'p(]RN), we have and

almost all x,y € R"that means except for a set of measures 0 all pairs of points you will
have the following inequality,



N

1—
— < — »
[uG) — uG)| < Clul, lx =y 7.

The same conclusions hold if R" is replaced by ]R+N or by Q of class C ' with a bounded

boundary. The analogous result is also true for Wl’p(ﬂ) for any open set (). (Refer Slide
Time: 4:34)
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N . . ) .
proof: Enough to prove for R as I explained just now extension operators will take care of

the rest of the cases.

So, step 1: Let D(RN). So, let Q be a cube with edges parallel to the coordinate axis. Assume
0 is in Q and let x belong to Q. So,

1
u(®) — u(0) = [u(tx)dt.
0

So, let u be the average mean or average of u over Q.
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So,

u= ITllg u(y)dy.

So, then u — u(0) = m f f z x—u‘(tx)dtdx

N 1

So, now u-— u(0)| _Wf Z f| = (tx)|dtdx

. (E)]dtdx == 1” Z |2 "

0Qi=1

[as [Q]= 7]

f J Z | (y)lt dtdy [putting tx = y]
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Now, tQ € Q (0 <t < 1). And therefore, you have that and now you apply Holder to the

inner integral.

N
=

t{2|§;‘ Wldy < (150N’ Q1" S+ =1

i Q i
so this 1s what we have.
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So, now if you substitute that in the previous inequality you get mod u bar minus u 0 is less

than equal to, so you will get mod u 1, P Q because I have sigma i equals 1 to all of the



powers will come there. And then by R power N minus 1 is already there and then I will get

what is mod of t Q.

So, mod of t Q equals t power N R power N, so and then I am going to take 1 by P prime of
that so R power N by P prime will come there and then integral 0 to 1 of dt will be t power N
by P minus N because there is a t power minus N already. Now, I will get t power N by P
prime, sorry, N by P prime minus N and that is equal to so if [ R power N minus, so R power
N by P prime minus N will give you N times 1 by P prime minus 1 which is minus 1 by P, so

that is equal to R power 1 minus N by P.

If you simplify this expression here you get R power 1 minus N by P and then this integral if
I integrate this will just give you 1 minus N by P again using the fact that 1 by P plus 1 by P

prime equal to N and then mod u 1, P, Q. So, we have a nice relationship.
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Now, by translation this is valid for any such cube Q and any x in Q. So, you have that for

any such Q you have

1-N

_ =
[u — u()l < <=lul
14

100 °

Now, if x and y belong to Q you apply it both to x and to y and then you get by the triangle

1-
: . 2r 7
inequality |u(y) — u(x)| < 1T_ = |u|1'p’Q
14
(Refer Slide Time: 15:27)
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Now, given x,y € RN, We can always find Q containing them and of side r = 2|x — y|.

And therefore, you have that substituting that you get

N

1_
lu(y) —ux)| <Clx—yl ", Vxy E]RN.

So, this is for almost for every, for all x, y in ]RN. So, this is for u € D(RN). So, if

N N
u € Wl'p(R ) , then there exists u € D(]RN) such that u —u in Wl'p(]R ). And for a

N
subsequence pointwise almost everywhere. So, then that will imply for all u € Wl’p(R ). So

you apply it to u n and then you pass to the limit you get

N

1—
lu@y) —ux)| <Clx—y| ", aexy er" .
(Refer Slide Time: 17:52)
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step 2:1fu € D(RN), you have
[uGOl < (O] + Clul,, < Cliull, o < Cliull, -

N
And now again true for u € Wl’p(]R{ ) by density, D(Q) is dense and therefore you have this.

So, this implies that Wl'p(]RN)—> LOO(]RN).

So, this completely proves the theorem here.
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N
So, now you consider u € Wz'p(]R )= u,g—z € Wl’p(]RN), 1 <i< N.Now, if p <N,
thenu, 2 € " (R > u e W' (R").

Assume p *< N. So, when will this happen?

1 1_L_L i (»H* p** N
T <= -wap<y=L" =1"(R)
1 _1_2
p** p N

So, we can now iterate this to any positive integer and then we can iterate all the theorems.
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So, by iterating arguments in the previous preceding theorems we get the following.

Theorem: Let m > 1 aninteger. Let1 < p < oo.

(if) If - — 7= 0, then w™R") - LYR"), vq € [p,»).
(iff) If - — 2= < 0, then w™(RY) - LR,

In the last case, let k be the integral part and 0 be the fractional part of m — % . Then there

) p, N
exists C > 0, s.t. Yu € me(]R ) , we have

04
< < k.
ID%ul, o < Cllull, o V1l < K

For almost all x,y € R" and la| = k,

0
ID"u(x) = D'u@)| < Cllull  wlx =yl
D)

In particular, Wm’p(]RN) -C k(RN) and the k-th derivatives are Holder continuous.

(Refer Slide Time: 22:55)
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The previous derivatives will be actually Lipschitz continuous for all m > X Same results

N . . .. o
true for IR+ or Q of class ", because you are iterating the condition for the first derivative

1 : o .
you need C , so now for successive derivatives you have to include a bounded boundary and

for W Om'p (Q)for any open set omega in R".

remark: if m > % and |a| < k, then it implies that D uis Lipschitz continuous because

any higher, the first derivative of D is in L”, it is bounded. And therefore, D“u will be

automatically Lipschitz continuous. It is only when you come to alpha equals mod k you



cannot say anything about the next derivative and therefore you only have Holder continuous,
so that is just from the mean value theorem which says if the derivative is bounded then the
function is Lipschitz continuous. So, this completes the study of the embedding theorems.

Our next aim is to see which of these embeddings are going to be compact.



