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We are discussing Embedding theorems and yesterday we, let me recall the lemma of

Gagliardo.

Lemma: Let 𝑁 ≥ 2,  𝑓
1
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𝑁
∈ 𝐿𝑁−1(ℝ𝑁−1),   𝑥 ∈ ℝ𝑁,  𝑑𝑒𝑓𝑖𝑛𝑒 
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Then .
ℝ𝑁
∫ |𝑓|𝑑𝑥 ≤ Π

𝑖=1
𝑁|𝑓

𝑖
|

0,𝑁−1,ℝ𝑁−1

So, this was Gagliardo's lemma, we checked it in case 2 equal to 2 and 3, 2 was just

separation of variables, 3 was Cauchy Schwarz inequality and the general case follows by

induction on n and using Holder inequality, instead of Cauchy Schwarz inequality.

Now, we are going to discuss the case . So, we want to define𝑝 < 𝑁



1
𝑝* = 1

𝑝 − 1
𝑁

So, this implies that of course, that . So, now we have the important theorem , which𝑝 *> 𝑝 

is called Sobolev’s inequality.

Theorem: Let Then there exists a constant1 ≤ 𝑝 < 𝑁 𝑎𝑛𝑑 𝑝 *  𝑏𝑒 𝑎𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑏𝑜𝑣𝑒.

𝐶 = 𝐶(𝑝, 𝑁) > 0 𝑠. 𝑡.  ∀𝑢 ∈ 𝑊1,𝑝(ℝ𝑁) ,  

—-----(*)|𝑢|
0,𝑝*, ℝ𝑁 ≤ 𝐶|𝑢|

1,𝑝, ℝ𝑁  
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proof. Step 1. So, let so, you can write𝑢 ∈ 𝐷(ℝ𝑁),  1 ≤ 𝑖 ≤ 𝑁.

|𝑢(𝑥)| ≤
−∞

∞

∫ | ∂𝑢
∂𝑥

𝑖
(𝑥

1
,..., 𝑥

𝑖−1
,  𝑡,  𝑥

𝑖+1
,..., 𝑥

𝑁
)|𝑑𝑡 : = 𝑓

𝑖
(𝑥

𝑖

^
).

.⇒ |𝑢(𝑥)|
𝑁

𝑁−1 ≤ Π
𝑖=1

𝑁|𝑓
𝑖
(𝑥

𝑖

^
)|

1
𝑁−1

u cpt support is integrable .⇒ ∂𝑢
∂𝑥

𝑖
 ⇒ ∀1 ≤ 𝑖 ≤ 𝑁,  |𝑓

𝑖
|

1
𝑁−1 ∈ 𝐿𝑁−1(ℝ𝑁−1)

So, therefore, you have this. So, we can apply Gagliardo's lemma immediately.
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So, by Gagliardo, we get the

.
ℝ𝑁
∫ |𝑢(𝑥)|

𝑁
𝑁−1 𝑑𝑥 ≤ Π

𝑖=1
𝑁|𝑓

𝑖
|

1
𝑁−1

0,1,ℝ𝑁−1 = Π
𝑖=1

𝑁| ∂𝑢
∂𝑥

𝑖
|

1
𝑁−1

0,1,ℝ𝑁

Now, if you look at , this is nothing but 1 star because what is 1, 1 by 1 star equals 1 1 by𝑁
𝑁−1

p minus 1 by n. So, this is equal to n minus 1 by n and therefore, 1 star equals n by n minus 1.

So, whatever you have here you are nothing so, this is nothing but mod u of 0, 1 star, Rn. And

it is so, I must take it to the power of n minus 1 by n on both sides. So, I will get here

.|𝑢|
0,1*,ℝ𝑁 ≤ Π

𝑖=1

𝑁| ∂𝑢
∂𝑥

𝑖
|

1
𝑁

0,1,ℝ𝑁 ≤ |𝑢|
1,1,ℝ𝑁



So, this proves (*) when p =1.
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So, step 2. So, now we assume that and let , because if u is1 < 𝑝 < 𝑁 𝑢 ∈ 𝐷(ℝ𝑁),  𝑢 ≠ 0

0 the inequality is trivial. So, let to be chosen, we are not choosing it yet, we will𝑡 ≥ 1 

choose it in, in the meantime. So, consider mod u to the t minus 1 u.

So, this is of compact support, no problem because u itself has compact support and is

continuously differentiable because you are taking t power t is bigger than 1, greater than

equal to 1 and you are multiplying mod u to the depends on you, so this such a function is

always continuously differentiable, we know that.

So, and in fact, you can write du by dxi of mod u to the t minus 1 u is nothing but t times mod

u to the t minus 1 du by dxi. So, this is simple elementary calculus which you can check for

yourself. If you take fx going to mod x power t minus 1x, that certainly is the differentiable

function and this will give you the derivative.

So, in step 1, we only used the fact that u was continuously differentiable. We did not use any

higher derivative, though it is differentiable. We did not use any of the higher derivatives and

so on. So, we can still apply, so we can apply step 1 to mod u to the t minus 1 u. So, we apply

that to the function so, what, what is mod u? 1 star is n by n minus 1, so if you are going to

apply to this function, so when you take modulus of this function, you get mod u power t and

then you are going to raise it to the power of n by n minus 1.
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So, .|𝑢|𝑡
0, 𝑡𝑁

𝑁−1 ,ℝ𝑁 ≤ 𝑡Π
𝑖=1

𝑁||𝑢|𝑡−1 ∂𝑢
∂𝑥

𝑖
|

1
𝑁

0,1,ℝ𝑁 ≤ 𝑡|𝑢|𝑡−1
0,(𝑡+1)𝑝*,ℝ𝑁Π

𝑖=1
𝑁| ∂𝑢

∂𝑥
𝑖
|

1
𝑁

0,1,ℝ𝑁

So, this is the Holder inequality which we have used.

So, now, we choose t, so choose t such that 𝑡𝑁
𝑁−1 = (𝑡 − 1)𝑝' .

𝑁
𝑁−1

1
𝑝' = 1 − 1

𝑡 ⇒ 𝑡 = 𝑁−1
𝑁
𝑝 −1

≥ 0  ⇒ 𝑡 ≥ 1 𝑎𝑠 𝑝 ≥ 1.

𝑝 *= 𝑡𝑁
𝑁−1 .   



So, therefore, . So, this proves (*) this with|𝑢|
0,𝑝*,ℝ𝑁 ≤ 𝑁

𝑁−1 𝑝 * |𝑢|
1,𝑝,ℝ𝑁

𝐶(𝑁, 𝑝) = 𝑁−1
𝑁 𝑝 *,   𝑢 ∈ 𝐷(ℝ𝑁).
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Step 3. (*) is valid for all So, if , there exists1 ≤ 𝑝 < 𝑁,  𝑢 ∈ 𝐷(ℝ𝑁). 𝑢 ∈ 𝑊1,𝑝(ℝ𝑁)

converging to u in norm. So, by (*), what do you get,𝑢
𝑛

∈ 𝐷(ℝ𝑁) 𝑊1,𝑝(ℝ𝑁)

.|𝑢
𝑛

− 𝑢
𝑚

|
0,𝑝*,ℝ𝑁 ≤ 𝐶|𝑢

𝑛
− 𝑢

𝑚
|

1,𝑝*,ℝ𝑁



So, this is Cauchy and therefore, this is also Cauchy. So, this implies that un Cauchy in Lp

star Rn implies some , but .𝑢
𝑛

→ 𝑣 𝑖𝑛 𝐿𝑝*(ℝ𝑁) 𝑢
𝑛

→ 𝑢 𝑖𝑛 𝐿𝑝(ℝ𝑁)

So, in both of these you will have a sub sequence which goes pointwise almost everywhere

and so, that should imply that

𝑢 = 𝑣 ⇒ 𝑢 ∈𝐿𝑝*(ℝ𝑁) ⇒ |𝑢
𝑛
|

0,𝑝*,ℝ𝑁 ≤ 𝐶|𝑢
𝑛
|

1,𝑝,ℝ𝑁

and therefore, you get star implies star by passing to the limit as n tends to infinity. So, this

proves the Sobolev imbedding theorem completely.
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So, now, we will see some corollaries of this thing, corollary.

corollary. So, let Then1 ≤ 𝑝 < 𝑁. 𝑊1,𝑝(ℝ𝑁) → 𝐿𝑞(ℝ𝑁),  𝑓𝑜𝑟 𝑞 ∈ [𝑝, 𝑝 *]

proof: p obvious, p* is proved in the Sobolev imbedding theorem. So, we only want to look

for . Then there exists (because then 1 by p star is less than 1 by q𝑞 ∈ (𝑝, 𝑝 *) α ∈ (0, 1)

less than 1 by p. So, it can be written as a convex combination) such that

1
𝑞 = α

𝑝 + 1−α
𝑝*

So, then what does this imply? This implies that . So, this implies that p by|𝑢|α𝑞 ∈ 𝐿
𝑝

α𝑞 (ℝ𝑁)

alpha q is greater than equal to 1, p star by 1 minus alpha q is also greater than equal to 1.

Similarly, mod u to the 1 minus alpha p star, 1 minus alpha q belongs to Lp star by 1 minus

alpha q of Rn for the same reason, because u is an Lp star we know that and therefore, if I

take p star by 1 minus alpha q, it belongs to Lp star of Rn. So, and you also have q is equal to

alpha q plus 1 minus alpha q.

And so, by Holder, we get that

(Gen. AM-GM|𝑢|
0,𝑞,ℝ𝑁 ≤ |𝑢|α

0,𝑝,ℝ𝑁|𝑢|1−α
0,𝑝*,ℝ𝑁 ≤ α|𝑢|

0,𝑝,ℝ𝑁 + (1 − α)|𝑢|
0,𝑝*,ℝ𝑁

inequality)

(Sobolev Ineq.)≤α|𝑢|
0,𝑝,ℝ𝑁 + 𝐶(1 − α)|𝑢|

1,𝑝,ℝ𝑁

≤ 𝐶
1
||𝑢||

1,𝑝,ℝ𝑁
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corollary. Let and . Then there exists a C>0, such that, for allΩ ⊂ ℝ𝑁 1 ≤ 𝑝 < 𝑁

, you have𝑢 ∈ 𝑊1,𝑝(Ω)

|𝑢|
0,𝑝*,Ω

≤ 𝐶|𝑢|
1,𝑝,Ω

.|𝑢|
0,𝑞,Ω

≤ 𝐶||𝑢||
1,𝑝,Ω

  ,  ∀𝑞 ∈ (𝑝, 𝑝 *)

In particular, for If if has bounded𝑞 ∈ [𝑝, 𝑝 *],  𝑤𝑒 ℎ𝑎𝑣𝑒 𝑊
0

1,𝑝(Ω) → 𝐿𝑞(Ω). Ω = ℝ𝑁
+

  𝑜𝑟 Ω

boundary and of class then𝐶1,   𝑊1,𝑝(Ω) → 𝐿𝑞(Ω),  ∀ 𝑞 ∈ [𝑝, 𝑝 *].



proof. If , then you have . So, for u tilde you write down we𝑢 ∈ 𝑊
0

1,𝑝(Ω) 𝑢
~

∈ 𝑊
0

1,𝑝(ℝ𝑁)

have these two inequalities and then u tilde nothing happens outside omega and therefore,

you have the inequalities for omega itself, so, that gives you the proof.

In case of omega equals Rn plus or if it has bounded boundary and so on then there exists a

prolongation operator . So, you apply the theorem𝑃: 𝑊 1,𝑝(Ω) → 𝑊 1,𝑝(ℝ𝑁)

|𝑃𝑢|
0,𝑝*,ℝ𝑁 ≤ 𝐶|𝑢|

1,𝑝,ℝ𝑁

|𝑢|
0,𝑝*,Ω

≤ |𝑃𝑢|
0,𝑝*,ℝ𝑁 ≤ 𝐶|𝑃𝑢|

1,𝑝,ℝ𝑁 ≤ 𝐶||𝑢||
1,𝑝,Ω

  .


