Sobolev Spaces and Partial Differential Equations
Professor S Kesavan
Department of Mathematics
The Institute of Mathematical Sciences
Imbedding Theorems: Case p Less Than N - Part 1
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We are discussing Embedding theorems and yesterday we, let me recall the lemma of

Gagliardo.

Lemma: LetN > 2, f , ..., f € L'RYY, x e RY, define

1<i<N, x.=(x,,x _X
1 i-1 i+

F@) = £,0¢ ) £ (6,).

N
Then fN |fldx <TI_, |fi|0'N_1'RN_1 :
R

So, this was Gagliardo's lemma, we checked it in case 2 equal to 2 and 3, 2 was just
separation of variables, 3 was Cauchy Schwarz inequality and the general case follows by

induction on n and using Holder inequality, instead of Cauchy Schwarz inequality.

Now, we are going to discuss the case p < N . So, we want to define



So, this implies that of course, that p *> p . So, now we have the important theorem , which

is called Sobolev’s inequality.

Theorem: Let1 < p < Nandp * be as defined above. Then there exists a constant

C=C@N) >0st vuew?R",

< I *
|u|0,p*,[RN = C|u|1'p'RN (*)
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proof. Step 1. So, letu € D(]RN), 1 < i < N.so, you can write

Ju _ "
lu(x)| < _foo| ox (xl,...,x, b X e xN)|dt.— fl_(xi).

i—

N 1

gy N =
= u@!™ <1 I,

1
u cpt support = Z_Z is integrable = V1 < i < N, [f|"" € MR

So, therefore, you have this. So, we can apply Gagliardo's lemma immediately.
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So, by Gagliardo, we get the

1 1
N 1 N N-1 _ N du ‘n-1
fN el de < T_Af 1 e = Ty 15
R

01,R" °

Now, if you look at — N T this is nothing but 1 star because what is 1, 1 by 1 star equals 1 1 by

p minus 1 by n. So, this is equal to n minus 1 by n and therefore, 1 star equals n by n minus 1.
So, whatever you have here you are nothing so, this is nothing but mod u of 0, 1 star, Rn. And

it is so, I must take it to the power of n minus 1 by n on both sides. So, I will get here

N, ou_
=



So, this proves (*) when p =1.
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So, step 2. So, now we assume that 1 < p < Nand letu € D(R '), u # 0, because ifu is
0 the inequality is trivial. So, let t = 1 to be chosen, we are not choosing it yet, we will

choose it in, in the meantime. So, consider mod u to the t minus 1 u.

So, this is of compact support, no problem because u itself has compact support and is
continuously differentiable because you are taking t power t is bigger than 1, greater than
equal to 1 and you are multiplying mod u to the depends on you, so this such a function is

always continuously differentiable, we know that.

So, and in fact, you can write du by dxi of mod u to the t minus 1 u is nothing but t times mod
u to the t minus 1 du by dxi. So, this is simple elementary calculus which you can check for
yourself. If you take fx going to mod x power t minus 1x, that certainly is the differentiable

function and this will give you the derivative.

So, in step 1, we only used the fact that u was continuously differentiable. We did not use any
higher derivative, though it is differentiable. We did not use any of the higher derivatives and
so on. So, we can still apply, so we can apply step 1 to mod u to the t minus 1 u. So, we apply
that to the function so, what, what is mod u? 1 star is n by n minus 1, so if you are going to
apply to this function, so when you take modulus of this function, you get mod u power t and

then you are going to raise it to the power of n by n minus 1.
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So, this is the Holder inequality which we have used.

So, now, we choose t, so choose t such that 1\;1_V1 =(t - Dp'.

N1
N—1 p 1-+=t= g
r
tN




N .
< *
So, therefore, |u| 0opR' = N-1P |u|1,p,]RN . So, this

cN,p) = LLp % w e DRY).
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(*)

this

with

Step 3. (*) is valid for all 1 <p < N, u € D(]RN). So, if u € Wl'p(]RN), there exists

u € D(RN) converging to u in Wl'p(IRN) norm. So, by (*), what do you get,

lu —u Clu —u |
n n

<
ml O,p*.RN - m!1,pxR"



So, this is Cauchy and therefore, this is also Cauchy. So, this implies that un Cauchy in Lp
star Rn implies some u v in Lp*(]RN), but u -u in LP(RN).

So, in both of these you will have a sub sequence which goes pointwise almost everywhere

and so, that should imply that

Clu | N

P* N
_ <
u=v=>uel (R)=|u| oprR' = 1 TnlpR

and therefore, you get star implies star by passing to the limit as n tends to infinity. So, this
proves the Sobolev imbedding theorem completely.
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So, now, we will see some corollaries of this thing, corollary.

corollary. So, let 1 < p < N. Then Wl'p(RN) - Lq(IRN), forq € [p,p *]

proof: p obvious, p* is proved in the Sobolev imbedding theorem. So, we only want to look
for g € (p,p *) . Then there exists a € (0, 1) (because then 1 by p star is less than 1 by q

less than 1 by p. So, it can be written as a convex combination) such that

o 1—a
— 4+ -
p p

1 _
q

_p
So, then what does this imply? This implies that |u|aq eL™ (RN). So, this implies that p by

alpha q is greater than equal to 1, p star by 1 minus alpha q is also greater than equal to 1.

Similarly, mod u to the 1 minus alpha p star, 1 minus alpha q belongs to Lp star by 1 minus
alpha q of Rn for the same reason, because u is an Lp star we know that and therefore, if I
take p star by 1 minus alpha q, it belongs to Lp star of Rn. So, and you also have q is equal to
alpha q plus 1 minus alpha q.

And so, by Holder, we get that

v (Gen. AM-GM

< o 1—a
uly gy = 1ul g gilul o ir

< —
0.0R v < alul opR" + (1 — a)|u]

0,p*R

inequality)

<alu| 0pR" + C(1 — )|y 1R (Sobolev Ineq.)

<
<Cllull,
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corollary. Let Q C R" and 1 < p < N. Then there exists a C>0, such that, for all
u € Wl'p(ﬂ), you have

|u|0’p*’Q < C|u|1'p'Q

*
uly o= Cllull, o Ve € @p ™).

In particular, for q € [p,p *], we have Wol'p(Q) - Lq(Q). IfQ = ]R{NJr or if () has bounded

boundary and of class C 1, then Wl'p(Q) - Lq(Q), Vqe€[pp *



proof. If u € Wol'p(ﬂ), then you have u € Wol'p(IRN). So, for u tilde you write down we

have these two inequalities and then u tilde nothing happens outside omega and therefore,

you have the inequalities for omega itself, so, that gives you the proof.

In case of omega equals Rn plus or if it has bounded boundary and so on then there exists a
prolongation operator P: W 1'p(Q) - W 1'ID(]IRN). So, you apply the theorem
<
|Pu|0,p*,]RN = Clull,p,]RN

< < < .
[uly g < 1Pul, oo < CIPUL o< Cllull

0,p*,Q *



