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We will now discuss Embedding theorems.

We have already seen that if say an interval, then . In fact, it is anΩ ⊂ ℝ 𝑊1,𝑝(Ω) → 𝐶(Ω)

absolutely continuous function that is what we saw. So, we would like to generalize this, see

if you have, if you have information on in some subspace.𝑊1,𝑝(Ω)

Of course, we already have that is the, from the definition. Now, we want𝑊1,𝑝(Ω) ⊂ 𝐿𝑝(Ω) ,  

to know if you have because of the extra information we have on the derivatives namely that

the distribution derivatives are also , this is an important piece of information, does that𝐿𝑝(Ω)

tell you more about the function.

So, in particular, we would like to know if is contained in some space of continuous𝑊1,𝑝(Ω)

functions, differentiable functions or so on or at least in some other spaces. So,𝐿𝑝(Ω) 𝐿𝑝(Ω)

for instance, do you have W 1p omega continuously embedded in some other Lp space, some

, where p is not equal to p*, so, we want to know , is it embedded in of𝐿𝑝*(Ω) 𝑊1,𝑝(Ω) 𝐿𝑝*(Ω)

omega, p not equal to p*, if such a thing is possible.



So, we would like to answer such questions and so, in particular, we looked for an inequality

of the form

|𝑢|
0,𝑝*, ℝ𝑁 ≤ |𝑢|

1,𝑝, ℝ𝑁  
 ,       ∀𝑢 ∈ 𝑊1,𝑝( ℝ𝑁 ) .

So, this will mean that is continuously embedded in where p* star is not𝑊1,𝑝( ℝ𝑁 ) 𝐿𝑝*(ℝ𝑁)

equal to p.
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So, first of all we want to know when you can prove such a result and the proof may just look

like magic or just manipulating p and L various p and then all these quantities, but as a simple

analysis we will tell you where to look and why we should look there. So, let us assume such

an inequality is true for all u in .𝑊1,𝑝( ℝ𝑁 )

And let lambda so, let Define Thusλ > 0,    𝑢 ∈ 𝑊1,𝑝( ℝ𝑁 ). 𝑢
λ
(𝑥) = 𝑢(λ𝑥).

𝑢
λ

∈ 𝑊1,𝑝( ℝ𝑁 ),    
∂𝑢

λ

∂𝑥
𝑖

(𝑥) = λ ∂𝑢
∂𝑥

𝑖
(λ𝑥).  

ℝ𝑁
∫ |

∂𝑢
λ

∂𝑥
𝑖

(𝑥)|𝑝𝑑𝑥 = λ𝑝

ℝ𝑁
∫ | ∂𝑢

∂𝑥
𝑖

(λ𝑥)|𝑝𝑑𝑥 = λ𝑝−𝑁

ℝ𝑁
∫ | ∂𝑢

∂𝑥
𝑖

(𝑦)|𝑝𝑑𝑦 

.⇒  |𝑢
λ
|

1,𝑝,ℝ𝑁 = λ
1− 𝑁

𝑝 |𝑢|
1,𝑝,ℝ𝑁
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Now, in the same way we can look for some other p* so, if 𝑝 *≥ 1  ,

.|𝑢
λ
|

0,𝑝*,ℝ𝑁 = λ
𝑁
𝑝* |𝑢|

0,𝑝*,ℝ𝑁

So, now, for all functions we are looking at the inequality of this form, thus we are looking at

this inequality for all functions. So, this has to be satisfied by all the functions u, u lambda

etcetera. So,



0 < 1
𝑐 ≤

|𝑢
λ
|

1,𝑝,ℝ𝑁

|𝑢
λ
|

0,𝑝*,ℝ𝑁
= λ

1− 𝑁
𝑝 + 𝑁

𝑝*   .

Now, let us look at this number . Suppose this number is positive.1 − 𝑁
𝑝 + 𝑁

𝑝*

Now, if this number is positive, then, then you let so, then this will go to 0 andλ → 0,  

therefore, you will not be able to get this inequality, it will violate this inequality because it is

bigger than equal to 1 by C which is strictly positive.

Now, if so, you let lambda go to 0, so you to get a contradiction, if 1 minus n by p plus n by p

star is less than 0, then you let lambda tend to infinity then again, this quantity will go to 0

and you will once more get a contradiction. Therefore, inequality is possible only when 1

minus n by p plus n by p star equal to 0 that is 1 by p star equal to 1 by p minus 1 by n. So,

this is the defining relationship for p*.
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So, if at all you get if you want to show that it is in possible only if𝑊1,𝑝(ℝ𝑁) 𝐿𝑝*(ℝ𝑁)

1
𝑝* = 1

𝑝 − 1
𝑁 > 0  ⇒ 𝑝 *> 𝑝,  𝑁 > 𝑝 .

So, we will therefore, restrict our attention to three cases.
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So, in three cases:

𝑝 < 𝑁,      𝑊1,𝑝(ℝ𝑁) → 𝐿𝑝*(ℝ𝑁) ,         1
𝑝* = 1

𝑝 − 1
𝑁

𝑝 = 𝑁,      𝑊1,𝑝(ℝ𝑁) → 𝐿𝑞(ℝ𝑁) ,         𝑞 ∈ [𝑝, ∞) .

𝑝 > 𝑁,      𝑊1,𝑝(ℝ𝑁) → 𝐶(ℝ𝑁) .

So, these are the three kinds of theorems which we will use. So, we will first start with p less

than n then we will do, from there deduce p equal to n and p bigger than n will require

different arguments similar to. So, in the one-dimensional case you have p greater than or



equal to 1 and therefore, you have p greater than equal to n and therefore, you had these two

results, the second and third were valid.

So, now, before you go on, we need a technical lemma due to Gagliardo.

Lemma : Let 𝑁 ≥ 2,  𝑓
1
,  .....,   𝑓

𝑁
∈ 𝐿𝑁−1(ℝ𝑁−1),   𝑥 ∈ ℝ𝑁,  𝑑𝑒𝑓𝑖𝑛𝑒 

1 ≤ 𝑖 ≤ 𝑁,   𝑥
𝑖

^
= (𝑥

1
,...., 𝑥

𝑖−1
, 𝑥

𝑖+1
,...., 𝑥

𝑁
) ∈ ℝ𝑁−1 .

𝑓(𝑥) = 𝑓
1
(𝑥

1

^
).... 𝑓

𝑁
(𝑥

𝑁

^
).

Then .𝑓 ∈ 𝐿1(ℝ𝑁) 𝑎𝑛𝑑 |𝑓|
0,1,ℝ𝑁 ≤ Π

𝑖=1
𝑁|𝑓

𝑖
|

0,𝑁−1,ℝ𝑁−1

So, this is the lemma of Gagliardo and which we will be using in the proof of the theorem.
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proof. Let us take 𝑁 = 2,    𝑓
1
,  𝑓

2
∈ 𝐿1(ℝ ),  𝑓(𝑥

1
, 𝑥

2
) = 𝑓

1
(𝑥

2
)𝑓

2
(𝑥

1
)

.|𝑓|
0,1,ℝ2 =

ℝ

∫ |𝑓(𝑥
1
, 𝑥

2
)|𝑑𝑥 = ∫ |𝑓

1
(𝑥

2
)|𝑑𝑥

2
∫ |𝑓

2
(𝑥

1
)|𝑑𝑥

1
 = |𝑓

1
|

0,1,ℝ
|𝑓

2
|

0,1,ℝ

Let us look at N equals 3. So, you have

.𝑓
1
,  𝑓

2
, 𝑓

3
∈ 𝐿2(ℝ2),  𝑓(𝑥

1
, 𝑥

2
, 𝑥

3
) = 𝑓

1
(𝑥

2
, 𝑥

3
)𝑓

2
(𝑥

1
, 𝑥

3
)𝑓

3
(𝑥

1
, 𝑥

2
)



ℝ
∫ |𝑓(𝑥)|𝑑𝑥

3
≤ |𝑓

3
(𝑥

1
, 𝑥

2
)|(

ℝ
∫ |𝑓

1
(𝑥

2
, 𝑥

3
)|2𝑑𝑥

3
)

1
2 (

ℝ
∫ |𝑓

2
(𝑥

1
, 𝑥

3
)|2𝑑𝑥

3
)

1
2

Now, we again integrate, integrate both sides with respect to x1 x2 and apply Cauchy

Schwarz again. So, you will get

ℝ
∫ |𝑓(𝑥)|𝑑𝑥

3
≤ (

ℝ
∫ |𝑓

3
(𝑥

1
, 𝑥

2
)|2𝑑𝑥

1
𝑑𝑥

2
)

1
2 (

ℝ
∫ |𝑓

1
(𝑥

2
, 𝑥

3
)|2𝑑𝑥

3
𝑑𝑥

2
)

1
2 (

ℝ
∫ |𝑓

2
(𝑥

1
, 𝑥

3
)|2𝑑𝑥

3
𝑑𝑥

1
)

1
2
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And that tells you that |𝑓|
0,1,ℝ3 ≤ Π

𝑖=1
3|𝑓

𝑖
|

0,2,ℝ2

So, in the general case I will skip the proof you can find it in the book. So, in the general

case, induction on n we have proved it for n equals 2, n equals 3, you assume for n and apply

Holder inequality in place of, in place of the Cauchy Schwarz which have been applied. So,

this is just a technicality.

So, we will do so, this is the Gagliardo lemma which we will crucially use in the proof of the

first theorem namely, next theorem which we are going to prove is is contained in𝑊1,𝑝(ℝ𝑁)

, when . So, this is a theorem which we next have to prove and we are going𝐿𝑝*(ℝ𝑁) 𝑝 < 𝑁

to use Gagliardo's lemma for that. We will do that next time.


