Sobolev Spaces and Partial Differential Equations
Professor S Kesavan
Department of Mathematics
The Institute of Mathematical Sciences
Exercises - Part 4
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Now it is time to do some exercises.

Exercises:
(1) LetQ = B(0; 1)  R”. Define u(x) = (1 + |log|xID®, 0 < k <. Show that

w € H'(Q).

1
solution: [ |Vul’dx = 2n[(1 + |log r])*“r dr
9] 0

Now, the repeated use of L’hopital’s rule = lim |log r|mr = 0.
r—0

[ vul’dx < oo.
Q
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So, now, we have to check what the distribution derivatives are. So, here, like in the case of
finding the fundamental solution of the Laplacian, we have to check if the distribution
derivative is really obtained by the ordinary differentiation rules.

So, let d € D(Q). fu dx = lim fu—dx

0x
% e—0 .Q i

And now, so, you have an omega is a unit ball and the only singularity of the function is at
the origin. So, I remove a ball of radius epsilon and therefore, I have a remaining, remaining
place, omega epsilon. Now, u is a 12 function on a set of finite measure, it is integrable d\ phi

by dx is a C infinity function with compact support and it is bounded whatever you want.

And therefore, by the dominated convergence theorem, you will have that this is nothing but
the limit epsilon tending to 0 integral on the w\ omega epsilon of u d phi by dx1. So, let us
look at the integral on omega epsilon u d phi by dx1. Now, we are all in a smooth function

case and therefore, we have, we can do all calculus formulae.

So, we use integration by parts:

fu dx=—fd) dx+fuc|)v

|x|=€



8
1] ucl)v1 =— efcos 0 (1 + |loge|k)d6 - 0ase — 0.
0

|x|=€
a a
fua—i)idx =— s{ d)a—;dx.
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So, now, r < 1, because |x| < 1. So,
u=(1+log %)k.

Ju __ Odu Or _ﬂCOSG
6x1 ~ or 6x1 ~ or

= k(1 + log )" 'r(—F) cos 6.

2
r

T
[12Pdx < cf@ +log B Lar, 2k -2 < 1.
Q 1 0

= Cf@ + )" Pds < o, [log - =s].
0

= :T“ € L}(Q), similarly, 2~ € L*(q).
1

6x2

=>u € H (Q).
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So, this is just an extra straightforward exercise where we have to compute the distribution

derivative and see that it is integral.
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2) Let Q= (ab),a =X, <x <w.<Xx = b, 1j= (xj_l, xj), 1<j<n Let
u €H'(I)V1<k<n Definew: (a,b)> R, ul, =u,. Show that
k
ueEH Q) o ue W)

solution: if u € Hl(ﬂ) s>u€Ec (ﬁ) (proved).



So, now conversely letu € C (ﬁ) and ¢ € D(Q). Then

b n n
fudp'dx = ¥ [udp'dx =— ¥ [u'dpdx
a k=11, k=11,

+ % uG)o0) = ut,_)o,,)

= w(@d(b) — u(b)d(b).

= 0.
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And therefore, you have that u'|1 = uk' =>u' € Lz(a, by=u € Hl(a, b).
k

]
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(3)LetQ c R" bounded opensetandu € H 10(9). Show that ||u]|

solution: we know that |u| € H' (Q) a|u| = sgn(u)g—;‘.

JIgedx = [ 150 dx = [150d

u#0 o



Since on {u = 0}, g—: = 0 a.e. this also we have shown and therefore, there is the new, no

L

new contribution from that side because this function is integrand is 0 almost everywhere. So,

you can just add that and so, you will get this and that completes the proof of this.
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(4) Let Q c R" bounded open set and p € C 1(Q). Show that u = pu defines a bounded
linear operator on Hl(ﬂ) into itself. If p > 0 on Q, show that this is an isomorphism of

H 1(9) onto itself.
solution: 50, p € C (Q) = bounded = pu € L'(Q). Let & € D(Q). Let

supp c Q' cc Q.Lletu »u,u €D R") as in Friedrich's theorem,
n n

P ou
ox (u ¢)dx — J Pa—xid)dx

¢ —
So, fpum F™ dx = [ p

Q
e [y pdx — [ ppd
= Q._Iaxi 4m¢ X ) pbdx .
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So, when you pass to the limit everything is fine so you can use whatever result you want. So,

you get

[ pu iax_ dx =— f—Luax‘ dbdx — f_ax_ pddx.
Q i Q' L Q' 1

a 6u
== J(3Fu +5p) bdx .
Q 13 1

0 _op 2
= ox (puw) = axiu+ axipEL(Q).



2 2 2 a
< _— <
£p udx < c£ lu|"dx and | ) (P, < cllull, -

= [lpull, , < cllull,

and therefore, it defines a continuous linear operator of H1 omega into itself.
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Now, if p > Oonﬁ, :%e C(ﬁ) andif v € Hl(Q), v = p(%v)

which is also H 1(Q).

So, the mapping is onto, it is 1-1 onto continuous and being in Banach spaces open mapping
theorem says or anyway even otherwise with % the inverse map is continuous and therefore,

you have that it is an isomorphism.



