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Now it is time to do some exercises.

Exercises:

(1) Let Define Show  thatΩ = 𝐵(0; 1) ⊂ ℝ2. 𝑢(𝑥) = (1 + |𝑙𝑜𝑔|𝑥||)𝑘,  0 < 𝑘 < 1
2 .

𝑢 ∈ 𝐻1(Ω).

solution:
Ω
∫ |∇𝑢|2𝑑𝑥 = 2π

0

1

∫(1 + |𝑙𝑜𝑔 𝑟|)2𝑘𝑟 𝑑𝑟

Now, the repeated use of L’hopital’s rule ⇒
𝑟 0
lim
→

|𝑙𝑜𝑔 𝑟|𝑚𝑟 = 0.

Ω
∫ |∇𝑢|2𝑑𝑥 < ∞.
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So, now, we have to check what the distribution derivatives are. So, here, like in the case of

finding the fundamental solution of the Laplacian, we have to check if the distribution

derivative is really obtained by the ordinary differentiation rules.

So, let . .ϕ ∈ 𝐷(Ω)
Ω
∫ 𝑢 ∂ϕ

∂𝑥
𝑖

𝑑𝑥 =
ϵ 0
lim
→ Ω

ϵ

∫ 𝑢 ∂ϕ
∂𝑥

𝑖
𝑑𝑥

And now, so, you have an omega is a unit ball and the only singularity of the function is at

the origin. So, I remove a ball of radius epsilon and therefore, I have a remaining, remaining

place, omega epsilon. Now, u is a l2 function on a set of finite measure, it is integrable d\ phi

by dx is a C infinity function with compact support and it is bounded whatever you want.

And therefore, by the dominated convergence theorem, you will have that this is nothing but

the limit epsilon tending to 0 integral on the ω\ omega epsilon of u d phi by dx1. So, let us

look at the integral on omega epsilon u d phi by dx1. Now, we are all in a smooth function

case and therefore, we have, we can do all calculus formulae.

So, we use integration by parts:

Ω
ϵ

∫ 𝑢 ∂ϕ
∂𝑥

𝑖
𝑑𝑥 =−

Ω
ϵ

∫ ϕ ∂𝑢
∂𝑥

𝑖
𝑑𝑥 +

|𝑥|=ϵ
∫ 𝑢ϕν

1
.



|𝑥|=ϵ
∫ 𝑢ϕν

1
=− ϵ

0

θ

∫ cos  θ ϕ (1 + | log ϵ|𝑘) 𝑑θ → 0 𝑎𝑠 ϵ → 0.

.
Ω
∫ 𝑢 ∂ϕ

∂𝑥
𝑖

𝑑𝑥 =−
Ω
∫ ϕ ∂𝑢

∂𝑥
𝑖

𝑑𝑥
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So, now, because . So,𝑟 < 1, |𝑥| < 1

𝑢 = (1 + log  1
𝑟 )𝑘.

∂𝑢
∂𝑥

1
= ∂𝑢

∂𝑟
∂𝑟

∂𝑥
1

= ∂𝑢
∂𝑟 cos θ

= 𝑘(1 + log  1
𝑟 )𝑘−1𝑟( −1

𝑟2 ) cos θ.

Ω
∫ | ∂𝑢

∂𝑥
1

|2𝑑𝑥 ≤ 𝐶
0

𝑟

∫(1 + log  1
𝑟 )2𝑘−2 1

𝑟 𝑑𝑟,     2𝑘 − 2 < 1.

[ ].=  𝐶
0

∞

∫(1 + 𝑠)2𝑘−2𝑑𝑠 < ∞,    log  1
𝑟 = 𝑠

⇒ ∂𝑢
∂𝑥

1
∈ 𝐿2(Ω),  𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦,   ∂𝑢

∂𝑥
2

∈ 𝐿2(Ω).   

⇒ 𝑢 ∈ 𝐻1(Ω).
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So, this is just an extra straightforward exercise where we have to compute the distribution

derivative and see that it is integral.
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(2) Let LetΩ = (𝑎, 𝑏),  𝑎 = 𝑥
0

< 𝑥
1

<..... < 𝑥
𝑛

= 𝑏,    𝐼
𝑗

= (𝑥
𝑗−1

,  𝑥
𝑗
),  1 ≤ 𝑗 ≤ 𝑛.

Show that𝑢
𝑘

∈ 𝐻1(𝐼
𝑘
) ∀ 1 ≤ 𝑘 ≤ 𝑛.  𝐷𝑒𝑓𝑖𝑛𝑒 𝑢: (𝑎, 𝑏) → ℝ,   𝑢|

𝐼
𝑘

= 𝑢
𝑘 

.  

𝑢 ∈ 𝐻1(Ω) ⇔ 𝑢 ∈ 𝐶(Ω).

solution: if (proved).𝑢 ∈ 𝐻1(Ω) ⇒ 𝑢 ∈ 𝐶(Ω)



So, now conversely let and Then𝑢 ∈ 𝐶(Ω) ϕ ∈ 𝐷(Ω).

𝑎

𝑏

∫ 𝑢ϕ'𝑑𝑥 =
𝑘=1

𝑛

∑
𝐼

𝑘

∫ 𝑢ϕ'𝑑𝑥 =−
𝑘=1

𝑛

∑
𝐼

𝑘

∫ 𝑢'ϕ𝑑𝑥

+
𝑘=1

𝑛

∑ 𝑢(𝑥
𝑘
)ϕ(𝑥

𝑘
) − 𝑢(𝑥

𝑘−1
)ϕ(𝑥

𝑘−1
)

= 𝑢(𝑎)ϕ(𝑏) − 𝑢(𝑏)ϕ(𝑏).

= 0.
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And therefore, you have that 𝑢'|
𝐼

𝑘

= 𝑢
𝑘
' ⇒ 𝑢' ∈ 𝐿2(𝑎, 𝑏) ⇒ 𝑢 ∈ 𝐻1(𝑎, 𝑏).
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(3) Let bounded open set and Show thatΩ ⊂ ℝ𝑁 𝑢 ∈ 𝐻1
0
(Ω). ||𝑢||

1,Ω
= |𝑢|

1,Ω
.

solution: we know that .|𝑢| ∈ 𝐻1
0
(Ω). ∂|𝑢|

∂𝑥
𝑖

= 𝑠𝑔𝑛(𝑢) ∂𝑢
∂𝑥

𝑖
 

Ω
∫| ∂|𝑢|

∂𝑥
𝑖

|2𝑑𝑥 =
𝑢≠0
∫ | ∂𝑢

∂𝑥
𝑖
|2𝑑𝑥 =

Ω
∫ | ∂𝑢

∂𝑥
𝑖
|2𝑑𝑥.



Since on this also we have shown and therefore, there is the new, no{𝑢 = 0},  ∂𝑢
∂𝑥

𝑖
= 0 𝑎. 𝑒.   

new contribution from that side because this function is integrand is 0 almost everywhere. So,

you can just add that and so, you will get this and that completes the proof of this.
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(4) Let bounded open set and Show that defines a boundedΩ ⊂ ℝ𝑁 ρ ∈ 𝐶1(Ω).  𝑢 → ρ𝑢

linear operator on into itself. If , show that this is an isomorphism of𝐻1(Ω) ρ > 0 𝑜𝑛 Ω

onto itself.𝐻1(Ω)

solution: so, Let Letρ ∈ 𝐶1(Ω) ⇒ 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 ⇒ ρ𝑢 ∈ 𝐿1(Ω). ϕ ∈ 𝐷(Ω).

Let as in Friedrich's theorem.𝑠𝑢𝑝𝑝(ϕ) ⊂ Ω' ⊂⊂ Ω. 𝑢
𝑛

→ 𝑢,  𝑢
𝑛

∈ 𝐷(ℝ𝑁)

So,
Ω
∫ ρ𝑢

𝑚
∂ϕ
∂𝑥

𝑖
𝑑𝑥 =

Ω'
∫ ρ ∂

∂𝑥
𝑖

(𝑢
𝑚

ϕ)𝑑𝑥 −
Ω'
∫ ρ

∂𝑢
𝑚

∂𝑥
𝑖

ϕ𝑑𝑥

=−
Ω'
∫ ∂ρ

∂𝑥
𝑖
𝑢

𝑚
ϕ𝑑𝑥 −

Ω'
∫

∂𝑢
𝑚

∂𝑥
𝑖

ρϕ𝑑𝑥  .  
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So, when you pass to the limit everything is fine so you can use whatever result you want. So,

you get

.
Ω
∫ ρ𝑢 ∂ϕ

∂𝑥
𝑖

𝑑𝑥 =−
Ω'
∫ ∂ρ

∂𝑥
𝑖
𝑢 ϕ𝑑𝑥 −

Ω'
∫

∂𝑢

∂𝑥
𝑖

ρϕ𝑑𝑥

.=−
Ω
∫( ∂ρ

∂𝑥
𝑖

 𝑢 +
∂𝑢

∂𝑥
𝑖

ρ ) ϕ𝑑𝑥

.⇒ ∂
∂𝑥

𝑖
(ρ𝑢) = ∂ρ

∂𝑥
𝑖

 𝑢 +
∂𝑢

∂𝑥
𝑖

ρ ∈ 𝐿2(Ω) 



.
Ω
∫ ρ2𝑢2𝑑𝑥 ≤ 𝑐

Ω
∫ |𝑢|2𝑑𝑥      𝑎𝑛𝑑   | ∂

∂𝑥
𝑖

(ρ𝑢)|
0,Ω

≤ 𝑐||𝑢||
1,Ω

.⇒ ||ρ𝑢||
1,Ω

≤ 𝑐||𝑢||
1,Ω

and therefore, it defines a continuous linear operator of H1 omega into itself.
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Now, if ρ > 0 𝑜𝑛 Ω  ,   ⇒ 1
ρ ∈ 𝐶(Ω )     𝑎𝑛𝑑 𝑖𝑓   𝑣 ∈ 𝐻1(Ω),  𝑣 = ρ( 1

ρ 𝑣)

which is also .𝐻1(Ω)

So, the mapping is onto, it is 1-1 onto continuous and being in Banach spaces open mapping

theorem says or anyway even otherwise with the inverse map is continuous and therefore,1
ρ

you have that it is an isomorphism.


