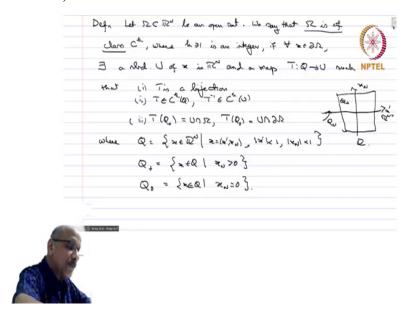
Sobolev Spaces and Partial Differential Equations Professor S Kesavan Department of Mathematics Indian Institute of Mathematical Science Extension theorems - Part 2

(Refer Slide Time: 00:18)



So, we will study the method of reflection for extension of functions, we will now see how it can be used for general domains. We start with the definition.

Definition: Let $\Omega \subset \mathbb{R}^N$ be an open set. We say that Ω is of class C^k , where $k \geq 1$ is an integer, if $\forall x \in \partial \Omega$, $\exists nbd$. U of x in \mathbb{R}^N and a map $T: Q \to U$ such that

(i) T is a bijection.

(ii)
$$T \in C^k(Q)$$
, $T^{-1} \in C^k(Q)$.

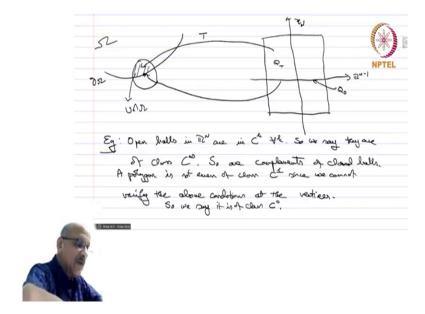
(iii)
$$T(Q_{+}) = U \cap \Omega$$
, $T(Q_{0}) = U \cap \partial \Omega$, where

$$Q = \{x \in \mathbb{R}^N : x = (x', x_{_N}), |x'| < 1, |x_{_N}| < 1\},\$$

$$Q_{_{+}} = \{x \in Q \colon x_{_{N}} > 0\}, \ \ Q_{_{0}} = \{x \in Q \colon x_{_{N}} = 0\} \,.$$

So, remember this is the picture Q is this cylindrical domain so, this is x dash which is Rn minus 1 and here you have xn. So, Q plus is here this is Q0 and the whole cube is called Q. so, what do we mean by this so, if you have.

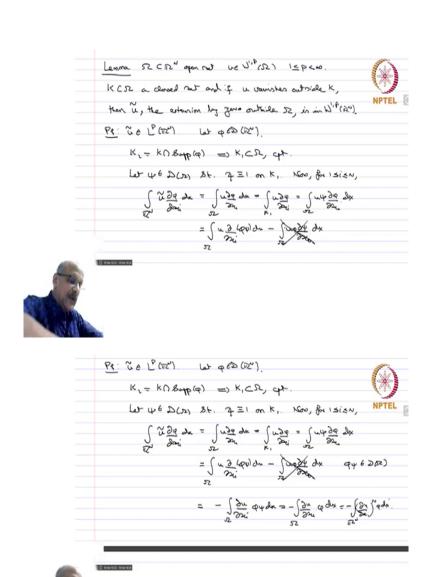
(Refer Slide Time: 03:35)



This is the boundary of Omega here d Omega and Omega is some set which is on this side so, for every x in d Omega you have a neighborhood u and you have here Q. And so, you have here Q_+ and this is Q_0 so, you have a mapping T here and you have, it takes Q_0 to the boundary. So, that is what it does and this is the intersection Omega the upper part here. So, you have this mapping so, example.

Examples: open balls in \mathbb{R}^N are in C^k , for all k so, we say they are of class C^∞ . So, are complements of closed balls, a polygon is not even of class C^1 since, we cannot verify the above conditions at the vertices so, we say it is of class C^0 so, C^∞ means it is in C^k for every k and this is of class C^0 .

(Refer Slide Time: 06:09)



So, now we are going to prove an extension theorem so, before that we need the following technical Lanma.

Lemma: Let $\Omega \subset \mathbb{R}^N$ be an open set and $u \in W^{1,p}(\Omega)$, $1 \leq p < \infty$. $K \subset \Omega$ is a closed set and if u vanishes outside K, then u, the extension by 0 outside K, is in $W^{1,p}(\mathbb{R}^N)$.

proof: $\tilde{u} \in L^p(\mathbb{R}^N)$. $\varphi \in D(\mathbb{R}^N)$.

$$K_1 = K \cap supp(\phi) \Rightarrow K_1 \subset \Omega - cpt.$$

Let $\psi \in D(\Omega)$ s.t. $\psi \equiv 1$ on K. Now for $1 \le i \le N$,

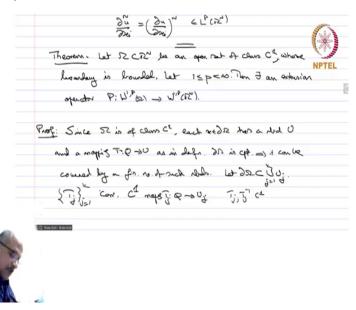
$$\int_{\mathbb{R}^{N}} \frac{\widetilde{u} \frac{\partial \Phi}{\partial x_{i}} dx}{\partial x_{i}} dx = \int_{\Omega} u \frac{\partial \Phi}{\partial x_{i}} dx = \int_{\Omega} u \Psi \frac{\partial \Phi}{\partial x_{i}} dx$$

$$= \int_{\Omega} u \frac{\partial (\Phi \Psi)}{\partial x_{i}} dx - \int_{\Omega} u \Phi \frac{\partial \Psi}{\partial x_{i}} dx$$

$$= - \int_{\Omega} \Psi \Phi \frac{\partial u}{\partial x_{i}} dx = - \int_{\Omega} \Phi \frac{\partial u}{\partial x_{i}} dx = - \int_{\mathbb{R}^{N}} (\frac{\partial u}{\partial x_{i}})^{N} \Phi dx.$$

$$\Rightarrow \frac{\partial \widetilde{u}}{\partial x_{i}} = (\frac{\partial u}{\partial x_{i}})^{N} \in L^{P}(\mathbb{R}^{N}).$$

(Refer Slide Time: 11:07)

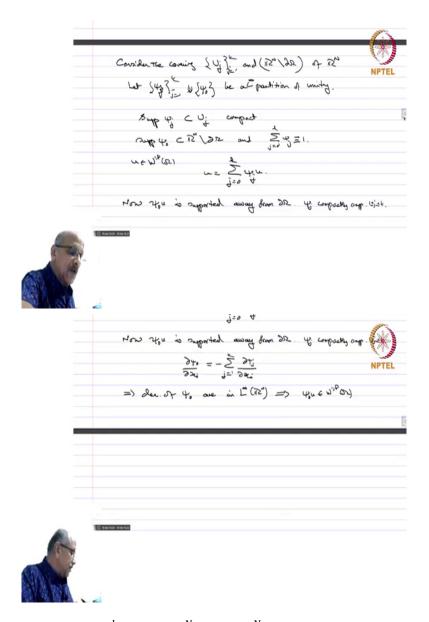


So, now we have the following theorem.

Theorem: Let $\Omega \subset \mathbb{R}^N$ be an open set of class C^1 whose boundary is bounded. Let $1 \leq p < \infty$. Then there exists an extension operator $P: W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^N)$.

proof: Since, Omega is of class C^1 , each $x \in \partial \Omega$ has a neighborhood U mapping T from Q to U as in definition. But $\partial \Omega$ is compact, which implies it can be covered by a finite number of such neighborhoods. Let us take, $\partial \Omega = \bigcap_{j=1}^k U_j$, $\{T_j\}_{j=1}^k$ corresponding C^1 maps $T_j \colon Q \to U_j, T_j, T_j^{-1} = C^1$.

(Refer Slide Time: 14:29)



So, consider the covering $\{U_j\}_{j=1}^k$ and $\mathbb{R}^N \setminus \partial \Omega$ of \mathbb{R}^N so, this is only a finite cover of \mathbb{R}^N and then you do not have to worry about local finiteness, let Psi Naught Psi j, j equals 1 to k union Psi Naught be a partition of unity, C^∞ partition of unity. I usually have to put the word locally finite but, now we only have a finite cover and therefore it does not matter, we do not have to use that word at all.

So, you have that the support of $\psi_j \subset U_j$ and U_j is a bounded set, because it is an image of Q and therefore this is compact. So, these are all compactly supported and support of ψ_0 is contained in Rn minus d Omega and finally we have Sigma j equals 0 to k ψ_j is identically

equal to 1. So, if u is in $W^{1,p}(\Omega)$, you can write u equals Sigma j equals 0 to k Psi j u. So,

now Psi 0 of you is supported away from d Omega and Psi j are compactly supported.

1 less than equal to j less than equal to k, that we already saw so, d ψ_0 by dxi is equal to

minus sigma j equals 1 to k d ψ_i by dxi. So, implied derivatives of ψ_i are bounded, are in L

infinity of Rn. Because all derivatives can be written in terms of ψ_i , ψ_i are compactly

supported functions so they have bounded derivatives.

So, this implies that ψ_0 of u belongs to $W^{1,p}(\Omega)$, because its derivatives are all in the L

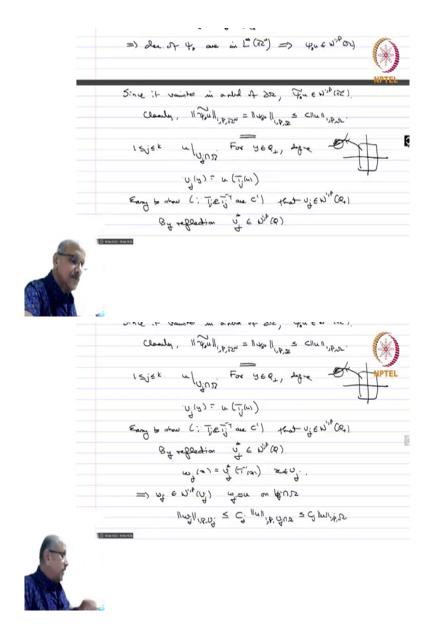
infinity so, by the product rule d by dxi of this will be d ψ_0 by dxi into u which is in L

infinity plus Psi Naught du by dxi that is also in L infinity. And therefore, you have a, that is

true. Because sigma ψ_j is equal to 1 and all the ψ_j of course are 0 less than equal to ψ_j less

than equal to 1 for all j. So, we also have that.

(Refer Slide Time: 18:16)



And since, it vanishes in a neighborhood of $\partial \Omega$, $\widetilde{\psi_0} u \in W^{1,p}(\mathbb{R}^N)$.

Clearly,
$$||\psi_0^{\sim}u||_{1,p,\mathbb{R}^N} = ||\psi_0u||_{1,p,\Omega} \le c||u||_{1,p,\Omega}$$
.

Therefore, you have this.

So, now you let $1 \le j \le k$, $u|_{U_j \cap \Omega}$. For $y \in Q_1$, define $U_i(y) = u(T_j(u))$.

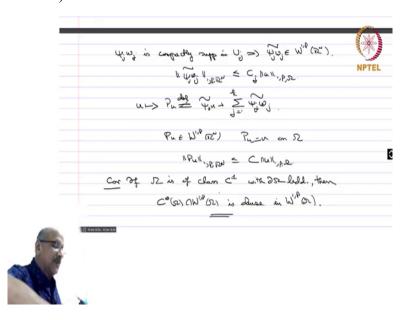
Enough to show (as T_j , $T_j^{-1} - C^1$) that $U_j \in W^{1,p}(Q_+)$.

By reflection $U_j^* \in W^{1,p}(Q)$. $W_j(x) = U_j^*(T^{-1}(x))$, $x \in U_j$.

$$\Rightarrow w_j \in W^{1,p}(U_j), \ w_j = u \text{ on } \Omega \cap U_j.$$

$$||w_j||_{1,p,U_j} \leq c_j ||u||_{1,p,U_j \cap \Omega} \leq c_j ||u||_{1,p,\Omega}.$$

(Refer Slide Time: 22:03)



 ψ_j , w_j is compactly supported in $U_j \Rightarrow w_j \widetilde{\psi}_j \in W^{1,p}(\mathbb{R}^N)$.

$$\begin{split} ||\psi_{j}^{\sim}w_{j}^{-}||_{1,p,\mathbb{R}^{N}} &\leq c_{j}||u||_{1,p,\Omega}.\\ \\ u \to P_{u} &= \psi_{0}^{\sim}u + \sum_{j=1}^{k}\psi_{j}w_{j}, \ P_{u} \overset{\sim}{\in} W^{1,p}(\mathbb{R}^{N}), \ P_{u} = u \ on \ \Omega.\\ \\ ||Pu||_{1,p,\mathbb{R}^{N}} &\leq c \ ||u||_{1,p,\Omega}. \end{split}$$

Corollary: if Ω is of class C^1 , with $\partial\Omega$ bounded, then as usual $C^{\infty}(\Omega) \cap W^{1,p}(\Omega)$ is dense in $W^{1,p}(\Omega)$. Because, you take the prolongation then you know that it can be approximated by d of Rn functions and then u restricted to Ω because you have a prolongation operator you do not have to use Friedrich's Theorem you have directly this thing.

So, this completes the extension theorem.