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We stated Stampacchia’s theorem.

Theorem: bounded open set and Lipscitz continuous,Ω ⊂ ℝ𝑁  1 ≤ 𝑝 < ∞,   𝑓: ℝ → ℝ 𝑓'

continuous except at a finite number of points . Then{𝑡
1
, 𝑡

2
,.... 𝑡

𝑘
}

𝑢 ∈ 𝑊1,𝑝(Ω) ⇒ 𝑓 ◦ 𝑢 ∈ 𝑊1,𝑝(Ω).



∂
∂𝑥

𝑖
𝑓 ◦ 𝑢(𝑥) = 𝑣

𝑖
=  (𝑓' ◦ 𝑢)(𝑥),   𝑖𝑓 𝑢(𝑥) ∉ {𝑡

1
, 𝑡

2
,.... 𝑡

𝑘
} ,  

.= 0,               𝑖𝑓 𝑢(𝑥) ∉ {𝑡
1
, 𝑡

2
,.... 𝑡

𝑘
}

I did not prove this but the proof, complete proof is available in the book topics in functional

analysis and applications which we are following for this course. So, proposition.

Proposition: Let and If vanishes on𝑢 ∈ 𝑊1,𝑝(Ω)  1 ≤ 𝑝 < ∞,   𝐾 ⊂ Ω 𝑐𝑜𝑚𝑝𝑎𝑐𝑡. 𝑢 Ω\𝐾,

then 𝑢 ∈ 𝑊
0

1,𝑝(Ω).

proof: So let, so choose - relatively compact sets such thatΩ'',  Ω' 𝐾 ⊂ Ω'' ⊂⊂ Ω' ⊂⊂ Ω.

Let Then Letψ ∈ 𝐷(Ω) 𝑠. 𝑡.  ψ ≡ 1 𝑜𝑛 Ω'',  𝑠𝑢𝑝𝑝(ψ) ⊂ Ω'. ψ𝑢 = 𝑢. {𝑢
𝑛
} ∈ 𝐷(ℝ𝑁) 𝑠. 𝑡.  

𝑢
𝑛

→ 𝑢 𝑖𝑛 𝐿𝑝(Ω) 𝑎𝑛𝑑 
∂𝑢

𝑛

∂𝑥
𝑖

→ ∂𝑢
∂𝑥

𝑖
 𝑖𝑛 𝐿𝑝(Ω

~
),  ∀ Ω

~
⊂ Ω.

So, then Alsoψ𝑢
𝑛

∈ 𝐷(Ω),  𝑠𝑢𝑝𝑝(ψ𝑢
𝑛
) ⊂ Ω.

~

.ψ𝑢
𝑛

→ ψ𝑢 𝑖𝑛 𝐿𝑝(Ω) 𝑎𝑛𝑑 
∂ψ𝑢

𝑛

∂𝑥
𝑖

→ ∂ψ𝑢
∂𝑥

𝑖
 𝑖𝑛 𝐿𝑝(Ω') ⇒  𝑎𝑙𝑠𝑜 𝑖𝑛 𝐿𝑝(Ω)
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.⇒ψ𝑢
𝑛

→ ψ𝑢 = 𝑢 𝑖𝑛 𝑊1,𝑝(Ω) ⇒ ψ𝑢 ∈ 𝑊
0

1,𝑝(Ω)

Proposition. bounded open set and Lipscitz continuous,Ω ⊂ ℝ𝑁  1 ≤ 𝑝 < ∞,   𝑓: ℝ → ℝ 𝑓'

continuous except at a finite number of points .  If , then{𝑡
1
, 𝑡

2
,.... 𝑡

𝑘
},  𝑓(0) = 0 𝑢 ∈ 𝑊

0
1,𝑝(Ω)

𝑓 ◦ 𝑢 ∈ 𝑊
0

1,𝑝(Ω).

proof.  Let {𝑢
𝑛
} ∈ 𝐷(ℝ𝑁) 𝑠. 𝑡.  𝑢

𝑛
→ 𝑢 𝑖𝑛 𝑊1,𝑝(Ω).

|𝑓(𝑢
𝑛
(𝑥)) − 𝑓(𝑢(𝑥))| ≤ 𝑀|𝑢

𝑛
(𝑥) − 𝑢(𝑥)|

⇒ 𝑓(𝑢
𝑛
)→ 𝑓(𝑢) 𝑖𝑛 𝐿𝑝(Ω).

By passing, if necessary, to a subsequence we can assume that

𝑢
𝑛

→ 𝑢,  
∂𝑢

𝑛

∂𝑥
𝑖

→ ∂𝑢
∂𝑥

𝑖
,  1 ≤ 𝑖 ≤ 𝑁 𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑎. 𝑒.  
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So, then f is continuous and by formula for derivative of 𝑓 ◦ 𝑢,  

∂(𝑓◦𝑢
𝑛
)

∂𝑥
𝑖

→ ∂(𝑓◦𝑢)
∂𝑥

𝑖
,  1 ≤ 𝑖 ≤ 𝑁 𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑎. 𝑒.

|
∂(𝑓◦𝑢

𝑛
)

∂𝑥
𝑖

− ∂(𝑓◦𝑢)
∂𝑥

𝑖
|𝑝 ≤ (2𝑀)𝑝||

∂𝑢
𝑛

∂𝑥
𝑖

|𝑝 − | ∂𝑢
∂𝑥

𝑖
|𝑝

So, by generalized dominated convergence theorem,

∂(𝑓◦𝑢
𝑛
)

∂𝑥
𝑖

→ ∂(𝑓◦𝑢)
∂𝑥

𝑖
,  𝑖𝑛 𝐿𝑝(Ω),   1 ≤ 𝑖 ≤ 𝑁.

⇒ 𝑓 ◦ 𝑢
𝑛

→ 𝑓 ◦ 𝑢  𝑖𝑛 𝑊1,𝑝(Ω).  



Now, support of is compact f(0)=0. So, this implies that outside𝑢
𝑛

𝑓 ◦ 𝑢
𝑛

= 0

a compact set ⇒ 𝑓 ◦ 𝑢
𝑛

∈ 𝑊
0

1,𝑝 (Ω) ⇒ 𝑓 ◦ 𝑢 ∈ 𝑊
0

1,𝑝 (Ω).
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So, nice corollary of this theorem.

Corollary. bounded open set andΩ ⊂ ℝ𝑁  𝑢 ∈ 𝑊
0

1,𝑝(Ω)⇒  |𝑢|,  𝑢+, 𝑢− ∈ 𝑊
0

1,𝑝(Ω).

proof. it satisfies all the conditions of the previous theorem.𝑓(𝑡) = |𝑡|,  

⇒ |𝑢| ∈ 𝑊
0

1,𝑝(Ω).

Also, .𝑢+ = 𝑢+|𝑢|
2 = max {𝑢, 0} 𝑎𝑛𝑑 𝑢+ = |𝑢|−𝑢

2 =− min {𝑢, 0}

Therefore .𝑢+, 𝑢− ∈ 𝑊
0

1,𝑝(Ω)

This very important observation though it is very simple to prove that, in fact, when you are

studying second order partial differential equations, there are some very important results

called maximum principles. And the maximum principles come from the observation we have

made in this corollary.

So, therefore, it is a very useful corollary which we have. So now, one more proposition,

Proposition. bounded open set and If1 ≤ 𝑝 < ∞,  Ω ⊂ ℝ𝑁  𝑢 ∈ 𝑊 1,𝑝(Ω) ∩ 𝐶(Ω). 𝑢 = 0

on ∂Ω,  𝑡ℎ𝑒𝑛 𝑢 ∈ 𝑊
0

1,𝑝(Ω).

Proof. So, we will do it in 2 steps.



So, the first step:  we assume is bounded in Now choose𝑠𝑢𝑝𝑝(𝑢) Ω.

𝐺 ∈ 𝐶1(ℝ),     𝑠. 𝑡.  |𝐺(𝑡)| ≤ |𝑡| 𝑎𝑛𝑑 

𝐺(𝑡) = 0,  𝑖𝑓 |𝑡| ≤ 1,

=  𝑡,  𝑖𝑓 |𝑡| ≥ 2.

⇒  |𝐺'(𝑡)| ≤ 𝑀.

So now, you define 𝑢
𝑛

= 1
𝑛 𝐺(𝑛𝑢) ⇒ 𝑢

𝑛
∈ 𝑊 1,𝑝(Ω).

claim: 𝑢
𝑛

→ 𝑢 𝑖𝑛 𝑊1,𝑝(Ω).
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So, let us try to establish this claim. So, you have that .𝑢
𝑛

= 𝑢,  𝑖𝑓 |𝑢| ≥ 2
𝑛

⇒ 𝑢
𝑛

→ 𝑢 𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑎𝑛𝑑 |𝑢
𝑛

− 𝑢|𝑝 ≤ 2𝑝𝑢𝑝 − 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒.

So, by the dominated convergence theorem, this implies that

⇒ 𝑢
𝑛

→ 𝑢 𝑖𝑛 𝐿𝑝(Ω).

∂𝑢
𝑛

∂𝑥
𝑖

= 𝐺'(𝑛𝑢) ∂𝑢
∂𝑥

𝑖
.

So, and |
∂𝑢

𝑛

∂𝑥
𝑖

→
∂𝑢

∂𝑥
𝑖

 𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 
∂𝑢

𝑛

∂𝑥
𝑖

−
∂𝑢

∂𝑥
𝑖

|𝑝 ≤ 2𝑝|
∂𝑢

∂𝑥
𝑖

|𝑝 − 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒.

By DCT,
∂𝑢

𝑛

∂𝑥
𝑖

→
∂𝑢

∂𝑥
𝑖

 𝑖𝑛 𝐿𝑝(Ω),  1 ≤ 𝑖 ≤ 𝑁.

Consequently, you have, 𝑢
𝑛

→ 𝑢 𝑖𝑛 𝑊1,𝑝(Ω).

Now, . But Therefore, this implies that𝑠𝑢𝑝𝑝(𝑢
𝑛
) ⊂ {𝑥 ∈ Ω:  |𝑢(𝑥)| ≥ 1

𝑛 } 𝑢(𝑥) = 0 𝑜𝑛 ∂Ω.

is bounded , closed, it is closed we know, it is bounded because support of u is𝑠𝑢𝑝𝑝(𝑢
𝑛
)

bounded that is where we are using this hypothesis and strictly contained in omega because of

the distance which it has. And consequently, you have that vanishes outside a compact set𝑢
𝑛

Therefore, by the earlier proposition you have that .⊂ Ω. 𝑢
𝑛

∈ 𝑊
0

1,𝑝(Ω)
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Now, step 2: is unbounded. So, then you have𝑠𝑢𝑝𝑝(𝑢) ζ
𝑛
(𝑥) = ζ( 𝑥

𝑛 ),  ζ ∈ 𝐷(ℝ𝑁),  

0 ≤ ζ ≤ 1,  𝑠𝑢𝑝𝑝(ζ) ⊂ 𝐵(0;  2),  ζ ≡ 1 𝑜𝑛 𝐵(0; 1).

⇒ ζ𝑢
𝑛

→ 𝑢 𝑖𝑛 𝑊1,𝑝(Ω)

is bounded𝑠𝑢𝑝𝑝(ζ
𝑛
) ⊂ Ω ∩ 𝐵(0; 2𝑛),  ζ

𝑛
𝑢 = 0 𝑜𝑛 ∂Ω.

.⇒ 𝐵𝑦 𝑠𝑡𝑒𝑝 1,  ζ
𝑛
𝑢 ∈ 𝑊

0
1,𝑝(Ω) ⇒ 𝑢 ∈ 𝑊

0
1,𝑝(Ω)



Remark. So, we have been proving theorems like if u=0 outside a compact set𝑢 ∈ 𝑊 1,𝑝(Ω),  

or then .𝑢 ∈ 𝑊 1,𝑝(Ω) ∩ 𝐶(Ω),  𝑢 = 0 𝑜𝑛 ∂Ω, 𝑢 ∈ 𝑊
0

1,𝑝(Ω)

Later on we will show that is precisely the function set of all functions in𝑊
0

1,𝑝(Ω)

which vanish on the boundary in the sense of trace. So, we will trace this what the𝑊 1,𝑝(Ω)

generalizes the notion of value on the boundary because as I remarked long ago that if since

the boundary is a measure 0 it does not make sense for an function for you to talk about the𝐿𝑝

value on the boundary, but because we know that the function We use𝑊
0

1,𝑝(Ω)

supplementary information to show that you do have something like the boundary value can

which can be defined in a nice way.

And precisely the boundary value vanishing is and that will coincide with the usual𝑊
0

1,𝑝(Ω)

boundary value when you have continuous functions and so on. And therefore, that is our aim.

So, we are making little progress towards that question and we have proved some particular

results.


