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So, we were proved the following theorem of Friedrichs. So, u € Wl'p(ﬂ) then there exists

ou ou

u € D(R") such that u_—uinL'(Q) and forall 1 < i < N, == 5 in L @), for

L

all 0 c Q. relatively compact subsets of () . So, this was the theorem which we proved. So,

let us now look at some applications of this.
So, the first

Theorem: so this is called the chain rule. The function of a function rule in calculus

which we have here,solet1 < p < ©,Q C RY open set and

GR - R C'

function, that means continuously differentiable and such that G(0) = 0. Assume further,
|G'| < M. So, it has a bounded derivative then ifu € Wl'p(ﬂ) we have G > u € Wl'p(ﬂ) as

well.

And So, you first differentiate with respect to whatever you have and then differentiate then.

So,



J _ 'O Ou_ .
a—xi(Gou)—(G u)axi,1SLSN.

So, what is (G ° u)(x) = G(u(x)). So, you see this the function of the function rule or the

chain rule you have if you want to differentiate this in normal calculus, you would have done

(G' ° u)g—: and that is exactly we are having the formula which we have in mind here.

So, proof, so let, so G(0)=0 implies by the mean value theorem you have that

|G(s)| = M]s].

So, that is the for all s € R". So, this is just application of the mean value theorem which

says that G(s) — G(0) < M|s — 0|, where M is the maximum of the derivatives. So, this

implies that (G ° u) € LP(Q), automatically because |G(u(x))| < M|u(x)|.
and therefore, if u € LP(Q), G°ouce€ Lp(Q).
Also, (G' ° u)%e Lp(ﬂ). So, this also belongs to € LP(Q). So it is enough to prove star.

Once we have this formula for the derivative, it automatically implies thatG ° u is an L’ and
first derivatives are all in L” and therefore, it is in W™ and that is exactly what we want in

addition to the formula which we have.
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So, let us do it in two cases. So, case 1 where we have 1 < p < o. So, let

N , p ou, ou P, '
u € D(R"), u —>uin € L'(Q) and w~- —-—in L (Q) for all Q c Q. So, we are

applying Friedrichs theorem. So, then G ° u - G°uin € LP(Q). Why, because
|Gun(x) - Gux)| <M |(un — u)(x)|. And so, if you integrate both sides the power p you

will get that this goes to 0. So, this also has to go to 0.

Also, for a subsequence you have that G ° u - Ge-ouin € Lp(Q)because we have for a
. . ", 1 )
subsequence un(x) - u(x) point wise almost everywhere and therefore, G is a C function

and therefore, the G is C ! function, so G' is continuous and therefore, this also goes to 0. Now,
we will henceforth work with the sub sequence, so [ am not putting the sub sequence notation
here {un }, T am going to work with that sub sequence, so I will call it un itself.

k
Now, let @ € D(Q). So, let Q be relatively compact in (1 such that supp(¢) Q'. So, you

have () and you have a compact set K here which is a support of ¢ I can always find by the

properties of the topology in R" and another which contains, Q this support. So, now you

have

d d
£(G o un)F;Pi—dx =[G un)F;Pi—dx,
Q



And now everything by the standard un is a smooth function G is a smooth function, so this is
smooth function, this also smooth function. So, by Greens theorem which is integration by

parts you get that this

f (G u ) cpdx There is no boundary term because phi vanishes on the

boundary since it is C infinity function with compact support therefore, it vanishes on the

boundary.

So, there is no boundary term on Q. So, now, we are going to pass to the limit

G e u - Gouin L, @ is a fixed C infinity function with compact support. So, we have

seen these many times already. So, this will converge toG °

ou
——. And this one will converge,

f((;ou) dx— —f(G u) (pdx

goes in L’ and phi is a fixed function C infinity function with compact support and therefore,
by again you can apply whatever favourite theorem you like the dominated convergence

theorem or any other theorem.

So, you have if you have for instance a sequence which is uniformly bounded in L
infinity converging point wise and function which is converging in L” then the product will

converge in L”. So, this and consequently you are multiplying it by ¢ and therefore, this will

' ou '
goto=— [(G-u )a—x"(pdx and then we can replace now {1 by () . So this is equal to
Q i

f (G °u ) (pdx and that is exactly what we wanted to prove and this will

prove star.
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So, case 2, this is easier, p = oo. So, if again @ € D()) and supp(¢p) C Q which is
relatively compact in () as before and then if u € Wl'm(ﬂ) then what do you have, in fact, in

.. . l,0, '
fact this impliesu € W~ (), forall 1 < p < oo also, but I do not want to want that now.
And now, we are in the previous case and case 1 applies and the result for us so, we have the

chain rule.

So now, remark important remark G(0) = Oused to show that

IG(s)| < M|s|, =G -uel’
this was the only place where we needed the fact that G(0) = 0.

Suppose () is bounded then by the mean value theorem, you have

1G(s) — G(O)] = Mls| = |G ° u(x)| < [G(0)] + Mlu(x)|

and () bounded means finite measure implies |G(0)| constant function is in L’ and therefore,
you do not need the and therefore, this implies that G ° u is also in L’
So, if you are in a bounded domain then you can still use this the chain rule without the

hypothesis G(0) = 0 which we are now going to do. So, we are going to prove another

interesting

. N
theorem, very nice theorem. So, let Q cR open set 1 <p < oo,

uew? Q)= |ue we

olul _ ou .
and—ax. = sgn(u)—axi, 1<i<N.

L
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where
sgn)(x) = + 1, if u(x) >0,
0, if u(x) =0,
— 1, if u() < 0.

Proof: so, we will prove this result now. So, let € > 0,, small positive number and define

£ =t + e

So, then f_€ C'(R) and f_ = ,

t +e.

and this shows that | fs(t)'| <1, fs(O) # 0, however () bonded implies that chain rule

applies.
And therefore, you have that u € Wl'p(ﬂ) = f CUE Wl'p(Q) and

WD u o g

ox. 2 ox.’ ==
i Au'te i

So now, |f s(1:) = It]] < \E, that is a very trivial inequality for you to check.

So, check just comes from the fact that £+ e <(t + \/E) , that is all, it just comes from

that. So, (t° + €) < (¢ +/&)°.

So, it just a consequence of this fact and therefore, you have that f8 °u - |u|in LP(Q).

u
Now, -

Vu +e.

goto -1, ifu = 0itis 0 anyway. So, so this goes to sig(u)g—;i a pointwise.

g_;* sgn(u) g_;:,’ because if u > 0 this will go to you +1, if u < 0 this will
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Further you have that

p 14
u ou . u p| ou
—_ 7 — < =
2 Ox. Slgn(u) Ox. =2 Ox.
Vu +e. i i i

Therefore, by the dominated convergence theorem, dominated convergence theorem implies

] 0
that a—xi(f(S °ou) - sgn(u)a—;‘i LP(Q).
So, this means that

(f, > w > Jul inW (@)= [ul €W ().



And of course, the derivative is what we have because we converges, so therefore, the
derivative and % = sgn(u)%, 1 <i< N. So, that proves this, it has very nice

L

applications which we will see later on. So, theorem again, consequences of this theorem.

Theorem: So, () C R" bounded openset 1 < p < oo.Letu € Wl'p(Q) then for

any t € Rand any 1 < i < N, we have that g—: = 0 almost everywhere on the set of all

i

{x e Q] ulx) =t} So

proof, so let us take u > 0, so that this implies that u = |u|. So,

ou _ Olul _ odu
Sgn(u)a_x, T ox. T ax
So, this implies that on the set{x € Q | u(x) = 0} we must have, we have g—z = 0 when I

say this is equal to this these are of course, L’ functions, so they are all equal almost

everywhere. Because sgn(u)g—; = 0 on the set {x € Q | u(x) = 0}. So, this is g—; =0

L

almost everywhere.
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Now, ifu € W p(Q), wewriteu =u —u . So,

u" = 2(lu@)| + u(x) = maxfu(x), 0},

U =—(Ju®@)| — u(x)) =— minfu(x), 0}.

So, both are non-negative functions and you can write it and then of course, you have

+ — : : : :
u =u —u this is something which you would have seen many times when doing real

analysis and therefore, if you have

setofall{x € Q |u(x) =0} ={x € Q| u+(x) =0}n{x€Q|u (x)=0}.And

almost everywhere on the set. So, for any t € R consider the function u — t. So, then apply
the theorem for 0 and then you get this. So, this is thing which says that if you have a level
set namely u(x) = 0, then the derivative of u distribution derivative will vanish almost

everywhere on that set.

Of course, remark the set {x € Q | u(x) = t} itself be of measure 0 because very often

you have smooth functions they will unless the function is flat, given any value the set where



it takes this value will be a set of measures 0. In which case above theorem gives no new
information, no information because you are saying something is 0 almost everywhere. Well,

it may not even be 0 at all because the set itself is of measure 0.

But however, if you have a function which is like this, so in portions like this where the
constant value is attained, so there you will have that u dash will be 0 almost everywhere just

like in the calculus case. So, this is what we have.
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Now, we will state the theorem. I would not prove it the proof you can read in the book which
I suggested to you topics and functional analysis and applications, but the proof is almost
similar to the chain rule proof we have a little more, you have to be a little careful here and
there, but otherwise there is no new ideas. So, we will save some time. So, we will just take

it. So, this is called

Stampacchia’s theorem.

N . . .

Let O € R be a bounded open set, 1 < p < oo and f: R = R Lipschitz continuous such
that, so Lipschitz continuous function is of bounded variation absolutely continuous etc. and
therefore, you have that it is differentiable almost everywhere and the derivative is bounded

by the Lipschitz constant.

So, f is continuous except at a finite number of points {t e tk} ifuew p(ﬂ), then

fouew?Q)and

def

RACAOR o —
o (%) =v=

(f *u) ;’” @), if @) & (.t ),

) , if u(x) € {tmt )



this we have already seen this in the, suppose a typical example for us is a function
f(t) = |t| and then there we saw in fact this is precisely sgn(u) is precisely given by this

expression.

So, this is a generalization of the previous theorem. And as I said it does not produce any new
ideas in the proof. It is only technically a little more complicated and therefore, we will omit

the proof and then we will continue with some other properties based on the chain rule later.



