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So, we were proved the following theorem of Friedrichs. So, then there exists𝑢 ∈ 𝑊1,𝑝(Ω)

such that and for all , in , for𝑢
𝑛

∈ 𝐷(ℝ𝑁) 𝑢
𝑛

→ 𝑢 𝑖𝑛 𝐿𝑃(Ω) 1 ≤ 𝑖 ≤ 𝑁
∂𝑢

𝑛

∂𝑥
𝑖

→
∂𝑢

∂𝑥
𝑖

 𝐿𝑃(Ω')

all relatively compact subsets of . So, this was the theorem which we proved. So,Ω' ⊂ Ω. Ω

let us now look at some applications of this.

So, the first

Theorem: so this is called the chain rule. The function of a function rule in calculus

which we have here, so let , open set and1 ≤ 𝑝 ≤ ∞ Ω ⊂ ℝ𝑁

𝐺: ℝ → ℝ, 𝐶1

function, that means continuously differentiable and such that . Assume further,𝐺(0) = 0

. So, it has a bounded derivative then if we have as|𝐺'| ≤ 𝑀 𝑢 ∈ 𝑊1,𝑝(Ω) 𝐺 ◦ 𝑢 ∈ 𝑊1,𝑝(Ω)

well.

And So, you first differentiate with respect to whatever you have and then differentiate then.

So,



, .∂
∂𝑥

𝑖
(𝐺 ◦ 𝑢) = (𝐺' ◦ 𝑢) ∂𝑢

∂𝑥
𝑖

1 ≤ 𝑖 ≤ 𝑁

So, what is . So, you see this the function of the function rule or the(𝐺 ◦ 𝑢)(𝑥) = 𝐺(𝑢(𝑥))

chain rule you have if you want to differentiate this in normal calculus, you would have done

and that is exactly we are having the formula which we have in mind here.(𝐺' ◦ 𝑢) ∂𝑢
∂𝑥

𝑖

So, proof, so let, so G(0)=0 implies by the mean value theorem you have that

.|𝐺(𝑠)| ≤ 𝑀|𝑠|

So, that is the for all . So, this is just application of the mean value theorem which𝑠 ∈ ℝ𝑁

says that , where M is the maximum of the derivatives. So, this𝐺(𝑠) − 𝐺(0) ≤ 𝑀|𝑠 − 0|

implies that automatically because .(𝐺 ◦ 𝑢) ∈ 𝐿𝑝(Ω),  |𝐺(𝑢(𝑥))| ≤ 𝑀|𝑢(𝑥)|

and therefore, if .𝑢 ∈ 𝐿𝑝(Ω), 𝐺 ◦ 𝑢 ∈ 𝐿𝑝(Ω)

Also, . So, this also belongs to . So it is enough to prove star.(𝐺' ◦ 𝑢) ∂𝑢
∂𝑥

𝑖
∈ 𝐿𝑝(Ω) ∈ 𝐿𝑝(Ω)

Once we have this formula for the derivative, it automatically implies that is an and𝐺 ◦ 𝑢 𝐿𝑝

first derivatives are all in and therefore, it is in and that is exactly what we want in𝐿𝑝 𝑊1,𝑝

addition to the formula which we have.
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So, let us do it in two cases. So, case 1 where we have . So, let1 ≤ 𝑝 < ∞

and in for all . So, we are𝑢
𝑛

∈ 𝐷(ℝ𝑁),  𝑢
𝑛

→ 𝑢 𝑖𝑛 ∈ 𝐿𝑝(Ω)
∂𝑢

𝑛

∂𝑥
𝑖

→
∂𝑢

∂𝑥
𝑖

 𝐿𝑃(Ω') Ω' ⊂ Ω

applying Friedrichs theorem. So, then . Why, because𝐺 ◦  𝑢
𝑛

→ 𝐺 ◦ 𝑢 𝑖𝑛 ∈ 𝐿𝑝(Ω)

And so, if you integrate both sides the power p you|𝐺𝑢
𝑛
(𝑥) − 𝐺𝑢(𝑥)| ≤ 𝑀|(𝑢

𝑛
− 𝑢)(𝑥)|.

will get that this goes to 0. So, this also has to go to 0.

Also, for a subsequence you have that because we have for a𝐺' ◦  𝑢
𝑛

→ 𝐺' ◦ 𝑢 𝑖𝑛 ∈ 𝐿𝑝(Ω)

subsequence point wise almost everywhere and therefore, function𝑢
𝑛
(𝑥) → 𝑢(𝑥) 𝐺' 𝑖𝑠 𝑎 𝐶1

and therefore, the G is function, so is continuous and therefore, this also goes to 0. Now,𝐶1 𝐺'

we will henceforth work with the sub sequence, so I am not putting the sub sequence notation

here , I am going to work with that sub sequence, so I will call it un itself.{𝑢
𝑛

𝑘

}

Now, let . So, let be relatively compact in such that . So, youφ ∈ 𝐷(Ω) Ω' Ω 𝑠𝑢𝑝𝑝(φ) ⊂ Ω'

have and you have a compact set here which is a support of I can always find by theΩ 𝐾 φ

properties of the topology in and another which contains, this support. So, now youℝ𝑁 Ω'

have

Ω
∫(𝐺 ◦ 𝑢

𝑛
) ∂φ

∂𝑥
𝑖

𝑑𝑥 =  
Ω'
∫(𝐺 ◦ 𝑢

𝑛
) ∂φ

∂𝑥
𝑖

𝑑𝑥,



And now everything by the standard un is a smooth function G is a smooth function, so this is

smooth function, this also smooth function. So, by Greens theorem which is integration by

parts you get that this

. There is no boundary term because phi vanishes on the=−  
Ω'
∫(𝐺' ◦ 𝑢

𝑛
)

∂𝑢
𝑛

∂𝑥
𝑖

φ𝑑𝑥

boundary since it is C infinity function with compact support therefore, it vanishes on the

boundary.

So, there is no boundary term on . So, now, we are going to pass to the limitΩ'

in is a fixed C infinity function with compact support. So, we have𝐺 ◦ 𝑢
𝑛

→ 𝐺 ◦ 𝑢 𝐿𝑝, φ

seen these many times already. So, this will converge to .  And this one will converge,𝐺 ◦
∂𝑢

𝑛

∂𝑥
𝑖

Ω
∫(𝐺 ◦ 𝑢 ) ∂φ

∂𝑥
𝑖

𝑑𝑥 =  −
Ω'
∫(𝐺' ◦ 𝑢 ) ∂𝑢

∂𝑥
𝑖

φ𝑑𝑥,

goes in and phi is a fixed function C infinity function with compact support and therefore,𝐿𝑝

by again you can apply whatever favourite theorem you like the dominated convergence

theorem or any other theorem.

So, you have if you have for instance a sequence which is uniformly bounded in L

infinity converging point wise and function which is converging in then the product will𝐿𝑝

converge in . So, this and consequently you are multiplying it by and therefore, this will𝐿𝑝 φ

go to and then we can replace now by . So this is equal to=−  
Ω'
∫(𝐺' ◦ 𝑢 )

∂𝑢
𝑛

∂𝑥
𝑖

φ𝑑𝑥 Ω
'

Ω

and that is exactly what we wanted to prove and this will=−  
Ω

∫(𝐺' ◦ 𝑢 )
∂𝑢

𝑛

∂𝑥
𝑖

φ𝑑𝑥.

prove star.
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So, case 2, this is easier, . So, if again and which is𝑝 = ∞ φ ∈ 𝐷(Ω) 𝑠𝑢𝑝𝑝(φ) ⊂ Ω'

relatively compact in as before and then if then what do you have, in fact, inΩ 𝑢 ∈ 𝑊1,∞(Ω)

fact this implies for all also, but I do not want to want that now.𝑢 ∈ 𝑊1,∞(Ω'), 1 ≤ 𝑝 ≤ ∞

And now, we are in the previous case and case 1 applies and the result for us so, we have the

chain rule.

So now, remark important remark used to show that𝐺(0) = 0

|𝐺(𝑠)| ≤ 𝑀|𝑠|,  ⇒ 𝐺 ◦ 𝑢 ∈ 𝐿𝑝

this was the only place where we needed the fact that .𝐺(0) = 0

Suppose is bounded then by the mean value theorem, you haveΩ

|𝐺(𝑠) − 𝐺(0)| ≤ 𝑀|𝑠| ⇒ |𝐺 ◦ 𝑢(𝑥)| ≤ |𝐺(0)| + 𝑀|𝑢(𝑥)|

and bounded means finite measure implies constant function is in and therefore,Ω |𝐺(0)| 𝐿𝑝

you do not need the and therefore, this implies that is also in .𝐺 ◦ 𝑢 𝐿𝑝

So, if you are in a bounded domain then you can still use this the chain rule without the

hypothesis which we are now going to do. So, we are going to prove another𝐺(0) = 0

interesting

theorem, very nice theorem. So, let open set ,Ω ⊂ ℝ𝑁 1 ≤ 𝑝 < ∞

𝑢 ∈ 𝑊1,𝑝(Ω) ⇒ |𝑢|∈ 𝑊1,𝑝(Ω

and ∂|𝑢|
∂𝑥

𝑖
= 𝑠𝑔𝑛(𝑢) ∂𝑢

∂𝑥
𝑖
,  1 ≤ 𝑖 ≤ 𝑁 .
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where

𝑠𝑔𝑛(𝑢)(𝑥) =  + 1  ,   𝑖𝑓  𝑢(𝑥) > 0,

0  ,   𝑖𝑓  𝑢(𝑥) = 0,

− 1  ,   𝑖𝑓  𝑢(𝑥) < 0.

Proof: so, we will prove this result now. So, let , small positive number and defineε > 0,

𝑓
ε
(𝑡) = 𝑡2 + ε.

So, then and ,𝑓
ε

∈ 𝐶1(ℝ) 𝑓
ε

' = 𝑡

𝑡2+ε.

and this shows that , , however bonded implies that chain rule|𝑓
ε
(𝑡)'| ≤ 1 𝑓

ε
(0) ≠ 0 Ω

applies.

And therefore, you have that and𝑢 ∈ 𝑊1,𝑝(Ω) ⇒ 𝑓
ε

◦ 𝑢 ∈ 𝑊1,𝑝(Ω)

∂(𝑓
ε
◦𝑢)

∂𝑥
𝑖

= 𝑢

𝑢2+ε.

∂𝑢
∂𝑥

𝑖
,   1 ≤ 𝑖 ≤ 𝑁.

So now, ,  that is a very trivial inequality for you to check.|𝑓
ε
(𝑡) − |𝑡|| ≤ ε

So, check just comes from the fact that , that is all, it just comes from𝑡2 + ε ≤(𝑡 + ε)

that. So, .(𝑡2 + ε) ≤ (𝑡 + ε)2

So, it just a consequence of this fact and therefore, you have that .𝑓
ε

◦ 𝑢 → |𝑢| 𝑖𝑛 𝐿𝑝(Ω)

Now, , because if this will go to you +1, if this will𝑢

𝑢2+ε.

∂𝑢
∂𝑥

𝑖
→ 𝑠𝑔𝑛(𝑢) ∂𝑢

∂𝑥
𝑖

𝑢 > 0 𝑢 < 0

go to -1, if it is 0 anyway. So, so this goes to sig(u) a pointwise.𝑢 = 0 ∂𝑢
∂𝑥

𝑖
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Further you have that

𝑢

𝑢2+ε.

∂𝑢
∂𝑥

𝑖
− 𝑠𝑖𝑔𝑛(𝑢) ∂𝑢

∂𝑥
𝑖

|
|
|

|
|
|

𝑝

≤ 2𝑝 ∂𝑢
∂𝑥

𝑖

||||

||||

𝑝

Therefore, by the dominated convergence theorem, dominated convergence theorem implies

that .∂
∂𝑥

𝑖
(𝑓

ε
◦ 𝑢) → 𝑠𝑔𝑛(𝑢) ∂𝑢

∂𝑥
𝑖

𝐿𝑝(Ω)

So, this means that

(𝑓
ε

◦ 𝑢) → |𝑢| 𝑖𝑛 𝑊1,𝑝(Ω) ⇒ |𝑢| ∈ 𝑊1,𝑝(Ω).



And of course, the derivative is what we have because we converges, so therefore, the

derivative and So, that proves this, it has very nice∂|𝑢|
∂𝑥

𝑖
= 𝑠𝑔𝑛(𝑢) ∂𝑢

∂𝑥
𝑖
,  1 ≤ 𝑖 ≤ 𝑁 .

applications which we will see later on. So, theorem again, consequences of this theorem.

Theorem: So, bounded open set . Let then forΩ ⊂ ℝ𝑁  1 ≤ 𝑝 < ∞ 𝑢 ∈ 𝑊1,𝑝(Ω)

any and any , we have that almost everywhere on the set of all𝑡 ∈ ℝ 1 ≤ 𝑖 ≤ 𝑁 ∂𝑢
∂𝑥

𝑖
= 0

. So{𝑥 ∈ Ω  |  𝑢(𝑥) = 𝑡}

proof, so let us take , so that this implies that . So,𝑢 ≥ 0 𝑢 = |𝑢|

𝑠𝑔𝑛(𝑢) ∂𝑢
∂𝑥

𝑖
= ∂|𝑢|

∂𝑥
𝑖

= ∂𝑢
∂𝑥

𝑖

So, this implies that on the set we must have, we have when I{𝑥 ∈ Ω  |  𝑢(𝑥) = 0} ∂𝑢
∂𝑥

𝑖
= 0

say this is equal to this these are of course, functions, so they are all equal almost𝐿𝑝

everywhere. Because on the set . So, this is𝑠𝑔𝑛(𝑢) ∂𝑢
∂𝑥

𝑖
= 0 {𝑥 ∈ Ω  |  𝑢(𝑥) = 0} ∂𝑢

∂𝑥
𝑖

= 0

almost everywhere.
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Now, if , we write . So, 𝑢 ∈ 𝑊1,𝑝(Ω) 𝑢 = 𝑢+ − 𝑢−

𝑢+ = 1
2 |𝑢(𝑥)| + 𝑢(𝑥)( ) = 𝑚𝑎𝑥{𝑢(𝑥), 0},

𝑢− = 1
2 |𝑢(𝑥)| − 𝑢(𝑥)( ) =− 𝑚𝑖𝑛{𝑢(𝑥), 0}.

So, both are non-negative functions and you can write it and then of course, you have

this is something which you would have seen many times when doing real𝑢 = 𝑢+ − 𝑢−

analysis and therefore, if you have

set of all . And{𝑥 ∈ Ω   | 𝑢(𝑥) = 0} = {𝑥 ∈ Ω |  𝑢+(𝑥) = 0} ∩ {𝑥 ∈ Ω |  𝑢−(𝑥) = 0}

∂𝑢
∂𝑥

𝑖
= ∂𝑢+

∂𝑥
𝑖

− ∂𝑢−

∂𝑥
𝑖

= 0

almost everywhere on the set. So, for any consider the function . So, then apply𝑡 ∈ ℝ  𝑢 − 𝑡

the theorem for 0 and then you get this. So, this is thing which says that if you have a level

set namely , then the derivative of u distribution derivative will vanish almost𝑢(𝑥) = 0

everywhere on that set.

Of course, remark the set itself be of measure 0 because very often{𝑥 ∈ Ω  |  𝑢(𝑥) = 𝑡}

you have smooth functions they will unless the function is flat, given any value the set where



it takes this value will be a set of measures 0. In which case above theorem gives no new

information, no information because you are saying something is 0 almost everywhere. Well,

it may not even be 0 at all because the set itself is of measure 0.

But however, if you have a function which is like this, so in portions like this where the

constant value is attained, so there you will have that u dash will be 0 almost everywhere just

like in the calculus case. So, this is what we have.
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Now, we will state the theorem. I would not prove it the proof you can read in the book which

I suggested to you topics and functional analysis and applications, but the proof is almost

similar to the chain rule proof we have a little more, you have to be a little careful here and

there, but otherwise there is no new ideas. So, we will save some time. So, we will just take

it. So, this is called

Stampacchia’s theorem.

Let be a bounded open set, and Lipschitz continuous suchΩ ⊂ ℝ𝑁  1 ≤ 𝑝 < ∞ 𝑓: ℝ → ℝ

that, so Lipschitz continuous function is of bounded variation absolutely continuous etc. and

therefore, you have that it is differentiable almost everywhere and the derivative is bounded

by the Lipschitz constant.

So, is continuous except at a finite number of points if , then𝑓' {𝑡
1
,..., 𝑡

𝑘
} 𝑢 ∈ 𝑊1,𝑝(Ω)

and𝑓 ◦ 𝑢 ∈ 𝑊1,𝑝(Ω)

∂(𝑓◦𝑢)
∂𝑥

𝑖
(𝑥) = 𝑣

𝑖
=𝑑𝑒𝑓    (𝑓' ◦ 𝑢) ∂𝑢

∂𝑥
𝑖

(𝑥)  ,  𝑖𝑓  𝑢(𝑥) ∉ {𝑡
1
,..., 𝑡

𝑘
},

=𝑑𝑒𝑓    0                     ,  𝑖𝑓  𝑢(𝑥) ∈ {𝑡
1
,..., 𝑡

𝑘
}.



this we have already seen this in the, suppose a typical example for us is a function

and then there we saw in fact this is precisely sgn(u) is precisely given by this𝑓(𝑡) = |𝑡|

expression.

So, this is a generalization of the previous theorem. And as I said it does not produce any new

ideas in the proof. It is only technically a little more complicated and therefore, we will omit

the proof and then we will continue with some other properties based on the chain rule later.


