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Let me recall the space of test functions.

                           𝐷(Ω) = ϕ: Ω →  ℝ | ϕ 𝑖𝑠 𝐶∞ 𝑖𝑛 Ω 𝑎𝑛𝑑 𝑠𝑢𝑝𝑝(ϕ)⊂Ω 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡{ }.

This is a vector space with the usual pointwise addition and the scalar multiplication



and we have seen that it is very well endowed; there are lots of functions which we

can construct with specified properties. Let us also recall that

supp(ϕ) = {𝑥 ∈ Ω:  ϕ(𝑥) ≠  0}.  

So, it is always a closed set and if it is compact then you say it is a function with

compact support. Now, we want to give a topology on this space. So, the topology

which we are going to give is called the inductive limit topology.

I do not want to give the details of this topology. Again, you can read it from the book

which I cited before, Topics in Functional Analysis and Applications and it does not

really matter for us. What we want to know is that this topology, which makes 𝐷(Ω)

into a topological vector space, is in fact for the purpose of continuity, it is enough to

deal with sequences.

So that is the nice property of this topology and therefore it is enough to know when

the sequence in is convergent. So it is enough to know when a sequence in𝐷(Ω) {ϕ
𝑛
}

is convergent. So, this is all that we know and therefore we want to know, since𝐷(Ω)

it is a vector space it is enough to know when it converges to 0, because if ϕ
𝑛

converges to , then converges to 0 and therefore it is enough to know whenϕ ϕ
𝑛
− ϕ 

the sequence is convergent.

Definition: A sequence in is said to converge to 0 if and only if there{ϕ
𝑛
} 𝐷(Ω)

exists a fixed compact set such that supp for all and and all𝐾 ⊂ Ω (ϕ
𝑛
) ⊂ 𝐾 𝑛 {ϕ

𝑛
}

it’s derived sequences converge uniformly to zero on .𝐾

So, what do you mean by derived sequences? So let us take for instance in one

dimension if , so if you have that means let us say an interval, so you 𝑛 = 1 Ω ⊂ ℝ 

have is a sequence and then, is a sequence and then is a sequence{ϕ
𝑛
} {ϕ'

𝑛
} {ϕ''

𝑛
}

and so on…….. gives another sequence. So, these are all the derived{ϕ(𝑘)
𝑛
}

sequences. All of them must converge uniformly to 0 on this compact set. So, if you

have higher dimensions then you think of sequences got by all kinds of partial

derivatives. Every one of them has to converge to 0. So, this is a very costly



condition. So, lots of things have to happen in order that sequence converges to{ϕ
𝑛
}

0 in .𝐷(Ω)

So, with this we can, so this is the topology and now we have a topological vector

space and as I said continuity on this topological vector space for linear functionals is

dependent only on behaviour of sequences. Therefore, well, generally in a topological

space except in metric spaces you cannot say continuity characterizes the entire

topology . But, in this case, it happens that you can do it here also.

So, the dual space of this is called the space of distribution. So, we have the next

definition.

Definition: A continuous linear functional on , i.e., is a linear𝑇 𝐷(Ω) 𝑇:  𝐷(Ω) →ℝ

functional,  is called a distribution on ifΩ

in{ϕ
𝑛
} → 0 𝐷(Ω) ⇒ 𝑇(ϕ

𝑛
) → 0.

So, this is the condition for a distribution. So, this is what we need.

So, the space of all distributions on is denoted as , so it is a dual space.Ω 𝐷(Ω)′

So now we want to give lots of examples of distributions and of course the first is to

redeem our promise that we wanted to generalize the notion of a function to a

distribution. So, we want to know what functions can be considered as distributions

and then we show that it is a more general thing.
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So, we have one more definition now.

Definition: Let be an open set. A real valued function is said to be locallyΩ ⊂ ℝ𝑁 𝑓

integrable if and only if for every , -compact, we have𝐾 ⊂ Ω 𝐾

𝐾
∫ |𝑓| 𝑑𝑥 <  ∞.

As I said, complex valued is also fine if you are dealing with complex things, but we

are going to deal with reals most of the time and it is all applicable to complex valued

functions.

So, if you have any continuous function, it is locally integrable. Because any

continuous function on any compact set is bounded and compact sets a finite

Lebesgue measure and therefore this integral is always finite. Any 𝐿𝑝 (1 ≤ 𝑝 ≤ ∞)

function is locally integrable. Because if you have a function which is in then it is𝐿𝑝

in (any compact) also and if your compact sets have finite measure, so if it is (any𝐿𝑝 𝐿𝑝

compact), then it is also (any compact). Therefore again these are all locally𝐿1

integrable. So let us give another example of function which is not covered by these

two examples.



Example: Let and for So, it is only defined away fromΩ = ℝ2 𝑓(𝑥) = 1

|𝑥|
𝑥 ≠ 0.

the origin and we want to show that this is not a continuous function and it is not in 𝐿𝑝

function because at the origin you have a problem. And therefore, you want to show

that this is locally integrable. Now, why is this locally, this blows up a torch, so why is

it locally integrable? Well, if you take any compact set which does not contain the𝐾

origin then of course this is a nice continuous function and therefore the integral will

be automatically finite. So enough to check integrability near the origin.

Let , which is a ball centered at origin and radius and we want to look𝐵 = 𝐵(𝑎; 0) 𝑎

at

,     [ polar coordinate; ]
|𝑥|≤𝑎

∫ 1

|𝑥|
 𝑑𝑥 =

0

𝑎

∫
0

2π

∫ 1
𝑟 𝑟𝑑𝑟𝑑θ 𝑟 = |𝑥|

= 2π < ∞

And therefore, you have that this function is a locally integrable function. Similarly,

you can construct locally integrable functions in higher dimensions also.
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So now we are going to give the first example of a distribution.



Example: Let be an open set and be a locally integrable function definedΩ ⊂ ℝ𝑁 𝑓

on ( ). Define byΩ 𝑓 ∈ 𝐿1
𝑙𝑜𝑐

(Ω) 𝑇
𝑓
:  𝐷(Ω) →ℝ

for all𝑇
𝑓
(ϕ) =

Ω
∫ 𝑓ϕ 𝑑𝑥 ,   ϕ ∈ 𝐷(Ω).

So, we have to check that this is a distribution. So first of all, we need to check

well-definedness.

well defined: |𝑇
𝑓
(ϕ)| = |

𝑠𝑢𝑝𝑝(ϕ)
∫ 𝑓ϕ 𝑑𝑥 | ≤ ||ϕ||

∞
𝑠𝑢𝑝𝑝(ϕ)

∫ |𝑓| < ∞ .

So, it is well defined, it is also linear. So that is why we need locally integrable

functions, so that you have, that this is well defined. You cannot define it otherwise

unless the function is integrable over any compact set.

Now we have to check continuity.

continuity: Let {ϕ
𝑛
} → 0 𝑖𝑛 𝐷(Ω).

to show: 𝑇(ϕ
𝑛
) → 0.

Now , where supp( )|𝑇
𝑓
(ϕ

𝑛
)| = |

𝑠𝑢𝑝𝑝(ϕ
𝑛
)

∫ 𝑓ϕ
𝑛
 𝑑𝑥 | ≤ ||ϕ

𝑛
||

∞
𝐾
∫ |𝑓| < ∞ ϕ

𝑛
⊂ 𝐾

-compact → 0

Therefore defines a distribution.𝑇
𝑓

Now, we are going to state a proposition.
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Proposition: Let Assume that𝑓 ∈ 𝐿1
𝑙𝑜𝑐

(Ω). ∀ϕ ∈ 𝐷(Ω),

Ω
∫ 𝑓ϕ 𝑑𝑥 = 0.

Then a.e.𝑓 ≡ 0

proof: step I: We assume that and𝑓 ∈ 𝐿1 (Ω) |Ω| < ∞.

Let . Then there exists such thatϵ > 0 𝑓
1

∈ 𝐷(Ω)



Ω
∫ |𝑓 − 𝑓

1
| 𝑑𝑥 < ϵ

( as is dense in . So, we are using this fact. We will prove this later.𝐷(Ω) 𝐿1 (Ω))

Let us take . Thenϕ ∈ 𝐷(Ω)

|
Ω
∫ 𝑓

1
ϕ𝑑𝑥| =

Ω
∫(𝑓

1
− 𝑓)ϕ𝑑𝑥 < ϵ||ϕ||

∞
.

Set 𝐾
1

= {𝑥 ∈ Ω: 𝑓
1
(𝑥) ≥ ϵ}

𝐾
2

= {𝑥 ∈ Ω: 𝑓
1
(𝑥) ≤− ϵ}

Now recall that has compact support. So, this implies that and are disjoint𝑓
1

𝐾
1

𝐾
2

compact sets contained in .Ω
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gave this exercise last time: there exists a such that on ,ℎ ∈ 𝐷(Ω) ℎ ≡ 1 𝐾
1

ℎ ≡− 1

on and𝐾
2

|ℎ(𝑥)| ≤ 1.

Let , which is again a compact set. Then we have𝐾 = 𝐾
1

∪ 𝐾
2

Ω
∫ 𝑓

1
ℎ 𝑑𝑥 =

Ω\𝐾
∫ 𝑓

1
ℎ 𝑑𝑥 +

𝐾
∫ 𝑓

1
ℎ 𝑑𝑥.

Now
𝐾
∫ |𝑓

1
| 𝑑𝑥 =

𝐾
∫ 𝑓

1
ℎ 𝑑𝑥 ≤ ϵ +

Ω\𝐾
∫ 𝑓

1
ℎ 𝑑𝑥 ≤ ϵ +

Ω\𝐾
∫ |𝑓

1
| 𝑑𝑥

On , we have Therefore,Ω\𝐾 |𝑓
1
(𝑥)| < ϵ.

Ω
∫ |𝑓

1
| 𝑑𝑥 =

Ω\𝐾
∫ |𝑓

1
| 𝑑𝑥 +

𝐾
∫ |𝑓

1
|𝑑𝑥 ≤ ϵ + 2

Ω\𝐾
∫ |𝑓

1
| 𝑑𝑥 ≤ ϵ + 2ϵ|Ω|.

Therefore, it follows that



Ω
∫ |𝑓 | 𝑑𝑥 =

Ω
∫ |𝑓 − 𝑓

1
| 𝑑𝑥 +

Ω
∫ |𝑓

1
| 𝑑𝑥 ≤ 2ϵ + 2ϵ|Ω| .

So, if is very small, we have = 0 a.e.ϵ
Ω
∫ |𝑓 | 𝑑𝑥 ⇒ 𝑓 ≡ 0

So, we have proved this in the case when is an integrable function on and has 𝑓 Ω Ω

finite measure.
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step II: Let be an arbitrary open set. Then you can writeΩ



, where is a sequence of relatively compactΩ =
𝑛=1

∞

⋃ Ω
𝑛

{Ω
𝑛
}

open sets.

For example, = .Ω
𝑛

{𝑥 ∈ Ω:  𝑑(𝑥, ℝ𝑁\Ω) > 1
𝑛 } ∩ 𝐵(0; 𝑛)

So, we are really looking at these sets and as increase the ball becomes bigger and𝑛

bigger. It will ultimately cover the whole of and therefore you will be able to writeℝ𝑁

in this fashion.𝑥

So now by step I, a.e. a.e. in𝑓|
Ω

𝑛

≡ 0 ⇒ 𝑓 ≡ 0 Ω.

So, what does this proposition tell us?

Remark: So, in view of this proposition, if and if , i.e.,𝑓, 𝑔 ∈ 𝐿1
𝑙𝑜𝑐

(Ω) 𝑇
𝑓

= 𝑇
𝑔

a.e.
Ω
∫ 𝑓 ϕ 𝑑𝑥 =

Ω
∫ 𝑔ϕ 𝑑𝑥 ⇒ 𝑓 − 𝑔 = 0

i.e., a.e.𝑓 = 𝑔

And when you are looking at measurable functions, equality almost everywhere is

enough and therefore they are essentially the same function.
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So, this implies that there exists 1-1 correspondence between elements of and𝐿1
𝑙𝑜𝑐

(Ω)

the distributions they generate. So, from is a bijection.𝑓 → 𝑇
𝑓

So, in future, I may, if necessary, I will say to be absolutely clear if there is a𝑇
𝑓
 

reason for confusion. Otherwise, we will just say the distribution itself is .𝑓

So, when I say a function is a distribution, I mean a function is𝑓 ∈ 𝐿1
𝑙𝑜𝑐

(Ω)

distribution, means we are looking, that is we are looking at the functional

ϕ →
Ω
∫ 𝑓 ϕ 𝑑𝑥.

And this gives you a one to one correspondence between the functions. So, the

function is well defined. So therefore, this is how we generalize the notion of a

function, a locally integrable function can be thought of as a distribution. So, we will

now continue other examples of distributions.


