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So, we will now study Approximation by Smooth Functions. So, we have already seen one

result of this kind namely, if you are in you can approximate it in that norm by being𝑊1,𝑝(ℝ𝑁)

some functions which are in . So, we want to know to what extent this will carry out inƊ(ℝ𝑁)

other open sets. So, we first start with the technical

Lemma.

So, be an open set and , , then let be its extension by 0. So, what doΩ ⊂ ℝ𝑁 𝑙𝑒𝑡 𝑢: Ω → ℝ𝑁 𝑢∼ 

you mean by that, so this is a notation we will use all the time. So,

𝑢∼ =   𝑢(𝑥),   𝑥 ∈ Ω

= 0 𝑥 ∈ Ω𝑐

, so you just take the function blindly extended by 0. So, if

then𝑢 ∈ 𝑊1,𝑝(Ω),  ψ ∈ 𝐷(Ω) (ψ𝑢)∼ ∈ 𝑊
1,𝑝

(Ω)



So, you multiply , so you multiplying by C infinity function with compact support, now youψ𝑢

extend it by 0 this happens to be in . And𝑊1,𝑝(Ω)

∀1 ≤ 𝑖 ≤ 𝑁 ∂
∂𝑥

𝑖
(ψ𝑢)∼ = ψ ∂𝑢

∂𝑥
𝑖

+ ∂ψ
∂𝑥

𝑖
𝑢( )∼

the usual product formula applied tilde. So, this is the formula. So

proof, so if this always implies that .𝑢 ∈ 𝐿,𝑝(Ω)  𝑢∼ ∈ 𝐿,𝑝(ℝ𝑁)

In fact, the norm will be the same, in fact. So, the norm even the norm will not change. So, you

have that this is, so in view of the statement, so if , and , so(ψ𝑢)∼ (ψ𝑢)∼ ∈ 𝐷(Ω) 𝑢 ∈ 𝑊1,,𝑝(Ω)

the product will be in the . So, its extension by 0 is an . So, if I can prove this𝐿,𝑝(Ω) 𝐿,𝑝(ℝ𝑁)

formula for derivatives, since all this inside the bracket is still in , so the tilde will be in𝐿,𝑝(Ω)

and therefore, the derivatives are in and the function is in and that will𝐿,𝑝(ℝ𝑁) 𝐿,𝑝(ℝ𝑁) 𝐿,𝑝(ℝ𝑁)

prove that psi u tilde is in .𝑊1,,𝑝(ℝ𝑁)

So, enough to show star. So, it is enough to prove the formula for the derivatives. So, that we

straightaway calculate. So let . So, what is integral overφ ∈ 𝐷(ℝ𝑁)

ℝ𝑁
∫ (ψ𝑢)∼ ∂φ

∂𝑥
𝑖

𝑑𝑥 =
Ω
∫(ψ𝑢) ∂φ

∂𝑥
𝑖

𝑑𝑥 =
Ω
∫ 𝑢 ∂(ψφ)

∂𝑥
𝑖

− φ ∂ψ
∂𝑥

𝑖
( )𝑑𝑥

=
Ω
∫ ∂𝑢

∂𝑥
𝑖

(ψφ) −
Ω
∫ 𝑢 ∂ψ

∂𝑥
𝑖

φ𝑑𝑥

=
ℝ𝑁
∫ ψ ∂𝑢

∂𝑥
𝑖

+ ∂ψ
∂𝑥

𝑖
𝑢( )∼

  φ𝑑𝑥



(Refer Slide Time: 05:42)

and that proves the fact therefore, the derivative So, this implies this implies (*), so that

immediately you have, so this is just a very simple lemma. So, now we have the

Theorem: of Friedrichs. Let , open set and then there1 ≤ 𝑝 < ∞ Ω ⊂ ℝ𝑁 𝑢 ∈ 𝑊1,𝑝(Ω)

exists a sequence un in such that in and in for every𝐷(ℝ𝑁) 𝑢
𝑛

→ 𝑢 𝐿𝑝(Ω)
∂𝑢

𝑛

∂𝑥
𝑖

→
∂𝑢

∂𝑥
𝑖

𝐿𝑝(Ω') Ω'

relatively compact in . So that means, so what does this mean, relatively compact inΩ' Ω' Ω' Ω

that is the notation which means that is and is compact. So, in the case weΩ' ⊂ Ω Ω' Ω = ℝ𝑁



had such that and in . Now, here we because𝑢
𝑛

∈ 𝐷(ℝ𝑁) 𝑢
𝑛

→ 𝑢  𝑖𝑛  𝐷(ℝ𝑁)
∂𝑢

𝑛

∂𝑥
𝑖

→
∂𝑢

∂𝑥
𝑖

𝐿𝑝(ℝ𝑁)

we are in our open set in the domain and not in the entire set we have to pay a price for it and

that is we lose the convergence of the derivatives in the entire domain, but we can do it in any

relatively compact subset of it. So, that is the what this theorem is telling. So, let us try to prove

this. So, as before we will always denote by the extension by the, so mollifiers and we∼ {ρ
ϵ
}

know that in . So, we all know this. So, now let be relatively compact ρ
ϵ

* 𝑢∼ → 𝑢∼ 𝐿𝑝(ℝ𝑁) Ω'

in remember this is the definition of relatively, relative compactness. So, then we can findΩ Ω''

open relatively compact in such that is relatively compact in which is relatively compactΩ Ω' Ω''

in . So, let us assume, so you have is here and this is . So, I can put one more relativelyΩ Ω Ω'

compact set inside. So, that is what this question of and its topology, you know we haveΩ'' ℝ𝑁

T3, T4 spaces and all that this comes from those properties.
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So, now let such that on and you take . So, it is theφ ∈ 𝐷(Ω) φ ≡ 1 Ω'' 𝑑 = 𝑑(∂Ω', ∂Ω'') > 0

distance between these 2 boundaries, the smallest distance which u have between the sets there.

So now, what about, so this will be strictly positive because you have 2 disjoint compact sets and

consequently the distance is positive.

Now, support of

𝑠𝑢𝑝𝑝(ρ
ϵ

* (ψ𝑢)∼− ρ
ϵ

* 𝑢∼) = 𝑠𝑢𝑝𝑝(ρ
ϵ

* (ψ∼ − 1)𝑢∼) ⊂ 𝐵(0; ϵ) + 𝑠𝑢𝑝𝑝(1 − ψ)

just I have taken out the common factor and now support of a convolution and that is the same

as a support of because is a function which is C infinity with compact support in1 − ψ ψ∼, ψ Ω

and outside , It only have extended by 0, so I have really not done anything to it.Ω

So, the , now support a is a, is somewhere here because on and1 − ψ 1 − ψ Ω'',  ψ = 1

therefore, the support of will be contained, support of will be outside and toΩ'' 1 − ψ 1 − Ω''

that you are adding distance ball of radius . So, you will have to include a small portion here.ϵ ϵ

So, this will be

if⊂ ℝ𝑁\Ω' ϵ < 𝑑.



So, as long as they do not add something more than the distance between these 2 boundaries, so

the small thin layer which I am adding is going to be well near the other boundary outer

boundary and therefore, this will be contained in . So, support of these 2 functions lies in .Ω' ℝ𝑁\Ω'

So, on we have in . Now, .Ω' ρ
ϵ

* (ψ𝑢)∼ = ρ
ϵ

* 𝑢∼ Ω' ρ
ϵ

* (ψ𝑢)∼ ∈ 𝑊1,𝑝(ℝ𝑁)

And what about its derivatives,

∂(ρ
ε
*(ψ𝑢)∼)

∂𝑥
𝑖

= ρ
ϵ

* ∂(ψ𝑢)∼

∂𝑥
𝑖

= ρ
ϵ

* ∂ψ
∂𝑥

𝑖
𝑢 + ψ ∂𝑢

∂𝑥
𝑖

( )∼

and this converges in .𝐿𝑝(ℝ
𝑁

)

So, what will this converge to, this will converge to

∂ψ
∂𝑥

𝑖
𝑢 + ψ ∂𝑢

∂𝑥
𝑖

( )∼

So, in particular restricting to we haveΩ' ∂(ρ
ϵ
*𝑢∼)

∂𝑥
𝑖

=
∂(ρ

ϵ
*(ψ𝑢)∼)

∂𝑥
𝑖

→ ∂𝑢
∂𝑥

𝑖

. And if you use the properties of what is psi is identically 1 in , so in particular soψ Ω'' Ω'

and and that is just equal to .∂ψ
∂𝑥

𝑖
≡ 0 ψ ≡ 1 ∂𝑢

∂𝑥
𝑖
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So, now you choose to be a sequence of real numbers going to 0 and then you takeϵ
𝑘

, then what, what do you know, we know that belongs to C infinity of ,𝑣
𝑘

= ρ
ϵ

* 𝑢∼ 𝑣
𝑘

 ℝ𝑁

in and for all for all relatively compact in𝑣
𝑘

→ 𝑢 𝐿𝑝(Ω) 1 ≤ 𝑖 ≤ 𝑁 ,  
∂𝑣

𝑘

∂𝑥
𝑖

→ ∂𝑢
∂𝑥

𝑖
 𝑖𝑛 𝐿𝑝(Ω') Ω'

. So now, we have got C infinity functions, from C infinity functions to go to C functions withΩ

compact support that is exactly the theorem which we have done already once, so we do not have

to repeat the technique.



So, all we have to do is let and you takeς ∈ 𝐷(ℝ𝑁),   𝑠𝑢𝑝𝑝(ς) ⊂ 𝐵(0; 2),   ς ≡ 1 𝑜𝑛 𝐵(0; 1)

exactly as before and then you take , and has all the requiredς
𝑘

= ς( 𝑥
𝑘 ) 𝑢

𝑘
= 𝑣

𝑘
ς

𝑘
∈ 𝐷(ℝ𝑁)

properties this just a repetition of the previous theorem’s proof because once you have proved

something which, which is this then multiplication by will produce exactly the sameς
𝑘

properties and therefore, you have nothing else to do.

So, this, so we can approximate u by function in , but we want to approximate the𝐷(ℝ𝑁) 𝐿𝑝

derivatives then you have to pay a little price you can only do in relatively compact subsets. So,

the question you ask is can I ever do in the whole space, can I, without losing on and that youΩ

can do provided you have what is called an extension operator. So, we have

Definition, so , open set a bounded linear operatorΩ ⊂ ℝ𝑁

𝑃: 𝑊1,𝑝(Ω) → 𝑊1,𝑝(ℝ𝑁)

is called an extension operator. I already mentioned this yesterday, so

𝑃𝑢|
Ω

= 𝑢,   ∀𝑢 ∈ 𝑊1,𝑝(ℝ𝑁).

So, this is the notion of extension operator. So, you note that you have

||𝑃𝑢||
1,𝑝,ℝ𝑁 ≤ 𝐶||𝑢||

1,𝑝,Ω
,     ∀𝑢 ∈ 𝑊1,𝑝(Ω),

this is the condition that it is a bounded linear operator.
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So now, the

Theorem: says if there exists an extension operator on then given there𝑊1,𝑝(Ω) 𝑢 ∈ 𝑊1,𝑝(Ω)

exists , such that and . Now, you do not have𝑢
𝑛

∈ 𝐷(ℝ𝑁) 𝑢
𝑛

→ 𝑢,  𝑖𝑛 𝐿𝑝(Ω)
∂𝑢

𝑛

∂𝑥
𝑖

→
∂𝑢

∂𝑥   𝑖𝑛 𝐿𝑝(Ω)

to worry about relatively compact sets for all .1 ≤ 𝑖 ≤ 𝑁

So again. all these results is for . So, proof is just 1 line. So, if P is the extension1 ≤ 𝑖 < ∞

operator, then there exists such that and So, now𝑢
𝑛

∈ 𝐷(ℝ𝑁) 𝑢
𝑛

→ 𝑃𝑢, 1 ≤ 𝑖 ≤ 𝑁 𝑖𝑛 𝐿𝑝(ℝ𝑁).



you just take un so that, so this un itself will work, therefore, so since result𝑃𝑢 = 𝑢,   𝑖𝑛 Ω,

follows. So, the question is when does it, when do we have extension operators we will see that

that it depends on the nature of the set in particular on the nature of its boundary and Ω

therefore, how we can extend depends on the domain and we will see results which talk about

that.

Now, what is, what does this theorem mean, it means that if So, remark, this is𝑢 ∈ 𝑊1,𝑝(Ω)

small p and there exists capital P extension operator then u can be approximated in by𝑊1,𝑝(Ω)

restrictions of functions which are C infinity functions in particular in omega. So, we𝐷(ℝ𝑁)

have a better a more difficult theorem called the Meyers Serrin theorem find a proof in Adams

the book which I cited, CF Adams, Mayers Serrin theorem says is dense in𝐶∞(Ω) ∩ 𝑊
1,𝑝

(Ω)

1 less than equal to P less than infinity.𝑊1,𝑝(Ω)

So, if you have a C infinity function which is dense in which is also a , see because if𝑊1,𝑝(Ω) Ω

is unbounded you cannot really say that C infinity function is in , so u have to put this𝐿𝑝

intersection, so it should be a C infinity function and it should also be such it is in such𝑊1,𝑝(Ω)

functions may or may not be restrictions of functions, so that it says that if you have such𝐷(ℝ𝑁)

C infinity functions which are in they are also dense, so you can approximate it by those𝐿𝑝

functions.
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Now, final remark. No such results for . You do not have any approximations. For𝑝 = ∞

instance, if you take you have . Now, you cannot, cannot𝑊1,∞(ℝ𝑁) 𝑢 ≡ 1,    𝑖𝑛 𝑊1,𝑝(ℝ𝑁)

approximate in L infinity norm by . Because if you have functions with compact support𝐷(ℝ𝑁)

C infinity functions with compact support are the in particular continuous functions with

compact support and the limit in L infinity norm would give you a function which vanishes at

infinity.

Therefore, u identically 1 does not vanish at infinity it is 1 everywhere and therefore, you can

never approximate this function by means of . So, you cannot expect any of the results𝐷(ℝ𝑁)

which we have proved for infinity, so we have to exclude it. So, now we will look at some

applications of Friedrichs theorem, which are very interesting.


