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So, we will now study Approximation by Smooth Functions. So, we have already seen one
result of this kind namely, if you are in Wl'p(]R{N)you can approximate it in that norm by being

: : . N L :
some functions which are in D(R ). So, we want to know to what extent this will carry out in

other open sets. So, we first start with the technical

Lemma.

So, Q c R" be an open set and ,let u: Q — [R{N, then let u_ be its extension by 0. So, what do

you mean by that, so this is a notation we will use all the time. So,
u = u®), x € Q
=0 x€Q

, 0 you just take the function blindly extended by 0. So, if

u e WP(Q), ¢ € D(Q)then (Yu)”~ € Wl'p(n)



So, you multiply Yu, so you multiplying by C infinity function with compact support, now you

extend it by 0 this happens to be in Wl'p(ﬂ) . And

: 2 ~_ [y, o
Visi=N ox, (lIJu) _(waxi + 6xiu)

the usual product formula applied tilde. So, this is the formula. So

proof, so if u € L’p(Q) this always implies thatu~ € L'p(]RN).

In fact, the norm will be the same, in fact. So, the norm even the norm will not change. So, you
have that this is, so in view of the statement, so if (Yu) , (Yu) € D(Q)andu € Wl"p(ﬂ), SO
the product will be in the L'p(Q). So, its extension by 0 is an L'p(]RN). So, if I can prove this
formula for derivatives, since all this inside the bracket is still in L'p(ﬂ), so the tilde will be in
L’p(]RN) and therefore, the derivatives are in L'p(]RN) and the function is in L’p(]RN) and that will
prove that psi u tilde is in Wl"p(IR{N).

So, enough to show star. So, it is enough to prove the formula for the derivatives. So, that we

straightaway calculate. So let ¢ € D(RN). So, what is integral over

J ()™ dx = ) S = [l 28— o2ax
RN i O i Q i

fu q)dx

e o

R
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and that proves the fact therefore, the derivative So, this implies this implies (*), so that

immediately you have, so this is just a very simple lemma. So, now we have the

Theorem: of Friedrichs. Let 1 < p < o0, () C R" open set and u € Wl'p(ﬂ) then there

ou ou ' .
exists a sequence un in D(]RN) such that u —u in Lp(Q)and -, 5. in LP(Q) for every Q

relatively compact in (1. So that means, so {1 what does this mean, Q relatively compact in ()

that is the notation which means thatis 0 < 0 and Q0 is compact. So, inthe case l = R we



N N 6un du . P N.
had u € D(R ) suchthatu — u in D(R') and 5—— ——in L' (R ). Now, here we because
n n X, ox,

we are in our open set in the domain and not in the entire set we have to pay a price for it and
that is we lose the convergence of the derivatives in the entire domain, but we can do it in any
relatively compact subset of it. So, that is the what this theorem is telling. So, let us try to prove

this. So, as before we will always denote by ~ the extension by the, so {pe} mollifiers and we
know that P, *u ->u in Lp(]RN). So, we all know this. So, now let Q be relatively compact

in 0 remember this is the definition of relatively, relative compactness. So, then we can find ()
open relatively compact in 0 such that () is relatively compact in (0 which is relatively compact
in Q . So, let us assume, so you have Q is here and this is{). So, I can put one more relatively

compact set ) inside. So, that is what this question of R and its topology, you know we have

T3, T4 spaces and all that this comes from those properties.
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So, now let @ € D(Q) such that @ = 1 on Q and you take d = d(aﬂ', GQ”) > 0. So, it is the
distance between these 2 boundaries, the smallest distance which u have between the sets there.
So now, what about, so this will be strictly positive because you have 2 disjoint compact sets and

consequently the distance is positive.

Now, support of

supp(p_* (yuw) — p_*u’) = supp(p_* (y — Du) < B(0;€) + supp(l — ¥)

just I have taken out the common factor and now support of a convolution and that is the same

as a support of 1 — s because s, is a function which is C infinity with compact support in Q
and outside (), It only have extended by 0, so I have really not done anything to it.

So, the 1 — Y, now support a 1 — { is a, is somewhere here because on Q”, Y =1 and

therefore, the support of Q"will be contained, support of 1 —  will be outside 1 — Q” and to
that you are adding € distance ball of radiuse. So, you will have to include a small portion here.

So, this will be

c R\Q ife < d.



So, as long as they do not add something more than the distance between these 2 boundaries, so

the small thin layer which I am adding is going to be well near the other boundary outer
boundary and therefore, this will be contained inQ'. So, support of these 2 functions lies in]RN\Q’.

So, on Q we have P, * (Yu) = P, *u" inQ. Now, p_ * (Yu) € Wl'p([R{N).

And what about its derivatives,

a(p,*(bw) ) _ )~ _ oy u
6xi _pe* axi _pe*( u + lIJ axi

N
and this converges in Lp(]R ).

So, what will this converge to, this will converge to

|

u
0x.
L

o g
(axiu+ Y

: : - ' apru)  A(p (b))
So, in particular restricting to 0 we have ——— = = - ‘;‘C

L L

. And if you use the properties of { what is psi is identically 1 in Q”, s0 in particularﬂv SO

oy

5.~ = 0and{y = land that is just equal to aaLx

L L
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So, now you choose €, to be a sequence of real numbers going to 0 and then you take

v, =P, *u", then what, what do you know, we know that v, belongs to C infinity of ]RN,

a ' il
v, > U in Lp(Q.) and foralll < i <N, D, ou in Lp(ﬂ) for all Q) relatively compact in

k 6xi 0x

Q . So now, we have got C infinity functions, from C infinity functions to go to C functions with
compact support that is exactly the theorem which we have done already once, so we do not have

to repeat the technique.



So, all we have to do is let ¢ € D(RN), supp(c) € B(0;2), ¢ = 1onB(0;1) and you take
S, = g(%) exactly as before and then you take u =vg € D(]RN), and has all the required

properties this just a repetition of the previous theorem’s proof because once you have proved

something which, which is this then multiplication by Sy will produce exactly the same

properties and therefore, you have nothing else to do.

) . N . .
So, this, so we can approximate u by D(R ) function in Lp, but we want to approximate the
derivatives then you have to pay a little price you can only do in relatively compact subsets. So,
the question you ask is can I ever do in the whole space, can I, without losing on () and that you

can do provided you have what is called an extension operator. So, we have
Definition, so (0 C ]RN, open set a bounded linear operator
P: W' @) » wRY
is called an extension operator. I already mentioned this yesterday, so
Pu|Q =u, YuE€ Wl’p(RN).
So, this is the notion of extension operator. So, you note that you have

1p
<
1Pull, o < Cllull,,,, Yu €W (@),

this is the condition that it is a bounded linear operator.
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So now, the

. . : 1, : 1,
Theorem: says if there exists an extension operator on W p(Q) then given u € W p(ﬂ) there

ou ou
exists u € D(RN), such that u —-u, in LP(Q) and ——— —— in Lp(Q). Now, you do not have

to worry about relatively compact sets forall 1 < i < N.

So again. all these results is for 1 < i < oo. So, proof is just 1 line. So, if P is the extension

operator, then there exists u € D(RN) such that u - Pu,and 1 < i < Nin Lp(]RN). So, now



you just take un so that, so this un itself will work, therefore, so since Pu = u, in (), result
follows. So, the question is when does it, when do we have extension operators we will see that
that it depends on the nature of the set () in particular on the nature of its boundary and
therefore, how we can extend depends on the domain and we will see results which talk about

that.

Now, what is, what does this theorem mean, it means that if u € Wl'p(Q) So, remark, this is
small p and there exists capital P extension operator then u can be approximated in Wl'p(ﬂ)by
restrictions of D(IRN) functions which are C infinity functions in particular in omega. So, we
have a better a more difficult theorem called the Meyers Serrin theorem find a proof in Adams
the book which I cited, CF Adams, Mayers Serrin theorem says COO(Q) N Wllp(ﬂ) is dense in

Wl'p(ﬂ) 1 less than equal to P less than infinity.

So, if you have a C infinity function which is dense in which is also a Wl'p(Q), see because if ()
is unbounded you cannot really say that C infinity function is in L’ so u have to put this
intersection, so it should be a C infinity function and it should also be such it is in Wl'p(Q)such
functions may or may not be restrictions of D(]RN) functions, so that it says that if you have such

C infinity functions which are in L’ they are also dense, so you can approximate it by those

functions.
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Now, final remark. No such results for p = oo. You do not have any approximations. For

. . 10, N Lo, N
instance, if you take W oo(IR% ) you have u =1, inW p(R ). Now, you cannot, cannot

approximate in L infinity norm by D(R ). Because if you have functions with compact support
C infinity functions with compact support are the in particular continuous functions with
compact support and the limit in L infinity norm would give you a function which vanishes at

infinity.
Therefore, u identically 1 does not vanish at infinity it is 1 everywhere and therefore, you can

. : : N
never approximate this function by means of D(R ). So, you cannot expect any of the results
which we have proved for infinity, so we have to exclude it. So, now we will look at some

applications of Friedrichs theorem, which are very interesting.



