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Sobolev Space:

We will now move to the core topic of this course, so we will discuss Sobolev Spaces, these are

subspaces of the spaces and they form a natural setting, a functional analytic setting for the𝐿𝑝

study of partial differential equations of many kinds. So, in all that follows will be anΩ ⊂ ℝ𝑁

open set, and then boundary of omega.∂Ω =

So, if you have for instance a bounded open set, so this will be and this will be . So,Ω ∂Ω

definition let be an integer.𝑚 ≥ 1

Let The sobolev space1 ≤ 𝑝 ≤ ∞ 

𝑊𝑚,𝑝(Ω) = 𝑢 ∈ 𝐿𝑝 |    𝐷α𝑢 ∈ 𝐿𝑝(Ω),  ∀|α| ≤ 𝑚{ }
so the two indices here m is for the order, p is for the exponent of the Lebasque as we will see in

a moment is defined by , so these are the multi indices as you know.∀|α| ≤ 𝑚



So, M is the order of up to the which you are considering the derivatives. So, u is an of𝐿𝑝(Ω)

omega function so it is a distribution and it has distributions of all derivatives of all orders. So,

we want that the distribution derivative may or may not be function so you want to show𝐿𝑝(Ω) 

that they are all functions or if, I mean if they are all functions up to order M, then𝐿𝑝(Ω) 𝐿𝑝(Ω)

you say the space is .𝑊𝑚,𝑝(Ω)

So, this is a vector space, so this is the definition of the space. So, this is a vector space, vector

subspace of of omega and we endo it with the following norm.𝐿𝑝(Ω)

So, if , then you say norm1 ≤ 𝑝 < ∞

||𝑢||
𝑚,𝑝,Ω

=
|α|≤𝑚

∑ ||𝐷α𝑢||
𝐿𝑃(Ω)

𝑝( )
1
𝑝

Now, you could define it in other ways also like for instance you could just define it as some of

the norms but they are all equivalent and we will see that this is a more convenient way to𝐿𝑃(Ω)

have it in. So, this is especially in a when P=2 this is a good way to write it rather than just a

sum.

But otherwise you could write since given is a certain number of norms, norm linear spaces

when you want to associate with it jointly a norm then this is you could do it in myriad base, but

this is the one which you are going to choose. And if

𝑝 = ∞ ||𝑢||
𝑚,𝑝,Ω

= 𝑚𝑎𝑥
|α|≤𝑚

 ||𝐷α𝑢||
𝐿𝑃(Ω)

Now, this max makes sense because we are only taking the maximum over finite number of

components. So, this is the space and this is the norm.
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So, now we have some

notations and conventions. So, the first one if 𝑝 = 2   ,    𝐻𝑚(Ω) = 𝑊2,𝑚(Ω)

p=2, so then it is somewhat special as we will see.

     || · ||
𝑚,Ω

= || · ||
𝑚,2,Ω

.

And the corresponding norm we will say norm will be stand for norm so the norm𝑚, Ω 𝑚, 2,  Ω

so this is just a slightly shorter notation so we drop the index p, the parameter p=2 so ifΩ, 𝑚, 2



this only two indices appear here then it is just the order and the domain because we know we

are in , so this is the first one.𝐿2

< 𝑢,  𝑣>
𝑚,Ω

=
|α|≤𝑚

∑  
Ω
∫𝐷α𝑢𝐷α𝑣  𝑑𝑥

𝑢| |
𝑚,𝑝,Ω

=
|α|=𝑚

∑  
Ω
∫ ||𝐷α𝑢||𝑝

𝐿𝑃(Ω)( )1/𝑝

, 𝑢 ∈ 𝑊𝑚,𝑝(Ω),  1 ≤ 𝑝 < ∞.

𝑝 = 2  𝑢| |
𝑚,Ω

=
|α|=𝑚

∑  
Ω
∫ ||𝐷α𝑢||2

𝐿2(Ω)( )1/2

𝑢 ∈ 𝐻𝑚(Ω).

H is for Hilbert and therefore we will see that in a moment.

So, both are functions so you can integrate and then that gives you an inner product and we𝐿2

are assuming without loss of generality that we are all real valued, so the we are working in over

for this. So, this gives you the norm, norm u square will be precisely the norm which weℝ

defined for P=2,

|𝑢|
𝑚,∞,Ω

= 𝑚𝑎𝑥
|α|=𝑚

 ||𝐷α𝑢||
𝐿∞(Ω)

δ

So, why are these semi norms they have otherwise all the properties of the norm except when

this quantity is 0, it does not mean that the distribution is 0 because if the first derivative is 0 for

instance then you know it is only a constant and therefore you do not get it that it is 0, so these

are only semi norms.
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Then for consistency we denote , so if m, that is m=0, we have defined𝐿𝑝(Ω) = 𝑊0,𝑝(Ω) 𝑚 ≥ 1

in the Sobolev space, now we want, we will see later why this is consistent so the is just𝐿𝑝(Ω)

the case when m=0 that means no derivative is used, so that means just a function.

And if you look at the definition of the norms and so on that is precisely corresponding to

and so and therefore . So, hence fourth, we writeα = 0 |α| = 0 𝐿𝑝(Ω)

for𝑢| |
𝑜,𝑝,Ω

||𝑢||
𝐿𝑝(Ω)

,      𝑝 ≠ 2

||𝑢||
𝐿𝑝(Ω)

= 𝑢| |
𝑜,𝑝,Ω

𝑝 = 2,   𝑢 ∈ 𝐿2(Ω),  ||𝑢||
𝐿2(Ω)

= 𝑢| |
𝑜,,Ω

So, this is the, these are the definitions which we want to keep, notations and notational

conventions which we are doing.
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So, now if you take ) sorry that means so what is this, this means u and all its first𝑢 ∈ 𝑊𝑚,𝑝(Ω

derivatives are in . So, now I am going to map it to the following thing so that𝐿𝑝(Ω)

𝑢 ∈ 𝑊𝑚,𝑝(Ω   )𝑚𝑎𝑝𝑠 𝑡𝑜  𝑢,  ∂𝑢
∂𝑥

1
, ∂𝑢

∂𝑥
2

,..., ∂𝑢
∂𝑥

𝑁
( ) = 𝑇𝑢 ∈ (𝐿𝑝(Ω))𝑁+1

So, this means that norm.

||𝑢||
𝑚,𝑝,Ω

= ||𝑇𝑢||
(𝐿𝑝(Ω))𝑁+1

So, this mapping the mapping T is an isometry from into . So, this tells us𝑊𝑚,𝑝(Ω) (𝐿𝑝(Ω))𝑁+1

the first theorem which we want to do.
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Theorem:

The space is complete so it is a Banach space. It is reflexive if . Separable𝑊1,𝑝(Ω) 1 < 𝑝 < ∞

if . In particular is a Hilbert space because it is a complete inner product1 ≤ 𝑝 < ∞ 𝐻1 (Ω)

space that is okay. So, proof, so let u n, so what we have to, we have just show that it every

Cauchy sequence converges.

Proof:

So, let be Cauchy in . So, then this what does this imply? From the norm so that{𝑢
𝑛
} 𝑊1,𝑝(Ω)

means

||𝑢
𝑛

− 𝑢
𝑚

||
1,𝑝,Ω

< ε   , ∀𝑛, 𝑚 ≥ 𝑁

⇒ ||𝑢
𝑛

− 𝑢
𝑚

||𝑝

1,𝑝,Ω
< ||𝑢

𝑛
− 𝑢

𝑚
|| 𝑝

𝐿𝑝(Ω)
+

𝑖=1

𝑁

∑ ||
∂𝑢

𝑛

∂𝑥
𝑖

−
∂𝑢

𝑚

∂𝑥
𝑖

||𝑝
𝑝

<  ε 

is a Cauchy sequence in and is a Cauchy sequence in⇒ {𝑢
𝑛
} 𝐿𝑝(Ω)

∂𝑢
𝑛

∂𝑥
𝑖

⎰
⎱

⎱
⎰

𝐿𝑝(Ω),  ∀1 ≤ 𝑖 ≤ 𝑁



⇒ 𝑢
𝑛

→ 𝑢,   
∂𝑢

𝑛

∂𝑥
𝑖

→ 𝑣
𝑖
,  𝑖𝑛  𝐿𝑝(Ω),  ∀1 ≤ 𝑖 ≤ 𝑁 
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Now, what is the meaning of the distribution derivative so then so let

Let then what do you have, thatφ ∈ 𝐷(Ω)
Ω
∫

∂𝑢
𝑛

∂𝑥
𝑖

φ𝑑𝑥 =−
Ω
∫ 𝑢

𝑛 
∂φ
∂𝑥

𝑖
 𝑑𝑥

Now, I want to pass to the limit in .
∂𝑢

𝑛

∂𝑥
𝑖

→ 𝑣
𝑖

𝐿𝑝

Now, phi being function with compact support will be in all spaces in particular in the dual𝐶∞ 𝐿𝑝

space of and therefore and that is a fixed function therefore I can pass to the limit so this will𝐿𝑝

converge to

Ω
∫ 𝑣

𝑖 
φ𝑑𝑥 =−

Ω
∫ 𝑢

 
∂φ
∂𝑥

𝑖
 𝑑𝑥

Now, u and is in function, fixed function with compact support which is in all𝑢
𝑛

→
 

∂φ
∂𝑥

𝑖
𝐶∞ 𝐶∞

the in the dual space and therefore this goes to . And this implies that𝑢
 

∂φ
∂𝑥

𝑖



⇒ 𝑣
𝑖

= ∂𝑢
∂𝑥

𝑖
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So, this means that because all its derivatives are in and consequent and of𝑢
𝑛,  

𝑢 ∈ 𝑊1,𝑝(Ω) 𝐿𝑝

because and that means u n goes to u in W 1, P of𝑢
𝑛,  

𝑢 ∈ 𝑊1,𝑝(Ω) 𝑢
𝑛

→ 𝑢,
∂𝑢

𝑛

∂𝑥
𝑖

→ 𝑣
𝑖
,  𝑖𝑛  𝐿𝑝(Ω)

omega and this implies that is complete.𝑊1,𝑝(Ω)

Now, you take the mapping

is isometry.𝑇: 𝑊1,𝑝(Ω) → (𝐿𝑝)𝑁+1(Ω),   𝑇(𝑢) = 𝑢,
∂𝑢

∂𝑥
1

,...,  
∂𝑢

∂𝑥
𝑁

( )
𝐼𝑚(𝑇)  𝑖𝑠 𝑎 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝑜𝑓 (𝐿𝑝)𝑁+1(Ω).

So, a close subspace will inherit all the reflexivity and separability properties of the original

space and an isometric isomorphic image of reflexive space is reflexive, separable space is

separable. And therefore, this implies that is reflexive for all and𝑊1,𝑝(Ω) ∀  1 < 𝑝 < ∞

separable so this comes from the inheritance properties of that.∀  1 ≤ 𝑝 < ∞
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So, remark so we have something useful from the proof which we have seen the above so let us

assume that this is a very useful technique which we remember.

So, let be a sequence in{𝑢
𝑛
} 𝑊1,𝑝(Ω).

Let be bounded𝑢
𝑛

→ 𝑢,  𝑖𝑛  𝐿𝑝(Ω).
∂𝑢

𝑛

∂𝑥
𝑖

⎰
⎱

⎱
⎰ 𝑖𝑛  𝐿𝑝(Ω).

. So, now if you take then is reflexive implies there exists a∀1 ≤ 𝑖 ≤ 𝑁   1 < 𝑝 < ∞  𝐿𝑝(Ω)

subsequence you can choose a common subsequence for all of them, they are only finite number

such that weakly in .
∂𝑢

𝑛
𝑘

∂𝑥
𝑖

⎰
⎱

⎱
⎰ → 𝑣

𝑖
 𝐿𝑝(Ω)

(Refer Slide Time: 22:36)



So, now let us again do what we did in the theorem so you have

Ω
∫

∂𝑢
𝑛

𝑘

∂𝑥
𝑖

φ𝑑𝑥 =−
Ω
∫ 𝑢

𝑛 
∂φ
∂𝑥

𝑖
 𝑑𝑥

So, now you have a weak convergence and phi is in the dual space fixed function by definition

of the weak convergence this goes to and therefore that is
Ω
∫ 𝑣

𝑖 
φ𝑑𝑥 

Ω
∫ 𝑣

𝑖 
φ𝑑𝑥 =−

Ω
∫ 𝑢

 
∂φ
∂𝑥

𝑖
 𝑑𝑥.

And consequently, once more we show, we see again that

⇒ 𝑣
𝑖

= ∂𝑢
∂𝑥

𝑖
⇒ 𝑢 ∈ 𝑊1,𝑝(Ω)

So, converges u in and all the derivatives are bounded in itself says that the{𝑢
𝑛
}  𝐿𝑝(Ω)  𝐿𝑝(Ω)

limit is in so you are able to get a lot of extra information from this, this is a very 𝑊1,𝑝 (Ω)

useful consultation.

So, if p=1, is separable so if something is bounded in the dual space it will have a weak 𝐿1(Ω)

star convergence subsequence and therefore same argument holds using weak star convergent

subsequence for . So, if you have in and all the derivatives first derivatives𝑊1,∞(Ω) {𝑢
𝑛
} → 𝑢 𝐿∞



are bounded in then you will get that and this is again with useful. So, we are𝐿∞ 𝑢 ∈ 𝑊1,∞(Ω)

able to predict when a function will belong to this thing.
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Remark:

So, then another remark can extend by induction these results . So, in most of this∀𝑚 ≥ 1

course I will only prove results for , sometimes I will prove for other also but most of𝑚 = 1 𝑚

the time it will be clear by iterating the arguments you can go on to higher and higher orders over

the spaces it is just technically more horrendous but otherwise no new ideas are involved and

therefore we will do that.

Definition: So, now important definition so we know that d omega is contained in and 𝐿𝑝(Ω)

for the distribution derivatives are just the classical derivatives and therefore they are also𝐷(Ω)

functions with compact support and in fact .𝐶∞ 𝐷(Ω) ⊂ 𝑊1,𝑝(Ω),   ∀𝑚

So, now comes the definition, we denote,

 𝑊
0

𝑚,𝑝(Ω) = 𝐷(Ω)
𝑊𝑚,𝑝(Ω)



so if you take that closure so this is a closed subspace of . So, important question 𝑊1,𝑝 (Ω)

which we will not be able to fully answer, we will answer partially. So,

question

?? 𝑊
0

𝑚,𝑝(Ω) ⊂ 𝐷(Ω)

so we will take some time to answer this question, we will soon answer it in the case of ℝ𝑁

itself but for open sets we will answer it after sometime.
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Case 𝑝 = 2,   Ω = ℝ𝑁

So, now the some notations for so Case So, now if Case Case𝑝 = 2,   Ω = ℝ𝑁 𝑝 = 2,   

then if you look at

𝐻𝑚(ℝ
𝑁

) = 𝑢 ∈ 𝐿2(ℝ𝑁)  | 𝐷α𝑢 ∈ 𝐿2(ℝ𝑁),  ∀ |α| ≤ 𝑚{ } 



Now, on we have the Fourier transform, so and the Fourier transform is, so square𝐿2(ℝ
𝑁

)

integrable and for partial theorem the L 2 norm of a function and its Fourier transform will be the

same.

Therefore, and you also know that

𝐷α𝑢
^

(ξ) = (2π𝑖)|α|ξα𝑢
^
(ξ),     ξ ∈ ℝ𝑁

𝑢 ∈ 𝐻𝑚(ℝ𝑁) ⇔ 𝑢
^

∈ 𝐿2(ℝ𝑁),  ξα𝑢
^
(ξ) ∈ 𝐿2(ℝ𝑁),   ∀|α| ≤ 𝑚.

So, and so this is and the converse also true and consequently you have another way of looking

at the space.

So, now if you look at

(1 + |ξ|2)𝑚,    
|α|≤𝑚

∑ |ξα |2

the same powers of occur in both. So, this implies , which depending only onξ ∃𝑀
1

> 0, 𝑀
2

> 0

the dimension N and small m such that

𝑀
1
 (1 + |ξ|2)𝑚 ≤

|α|≤𝑚
∑ |ξα |2 ≤ 𝑀

2
 (1 + |ξ|2)𝑚,   
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So, consequently we can equally, equal, so therefore we can equivalently define

             𝐻𝑚(Ω) = 𝑢 ∈ 𝐿2(ℝ𝑁)  |  (1 + |ξ|2)𝑚/2𝑢
^
(ξ) ∈ 𝐿2(ℝ𝑁) { } 

So, this is just the same as this statement, they are equivalent statements and therefore you can

write it this way.

And using the Plancherel theorem this implies that an equivalent norm in is and we will𝐻𝑚(ℝ𝑁)

denote it by the same symbol we will not give it another thing, so you will have



||𝑢||2
𝑚,ℝ𝑁 =

ℝ𝑁
∫ (1 + |ξ|2)𝑚|𝑢

^
(ξ)|2  𝑑ξ

So, this another way of writing the when and its norm. So, this is another𝐻𝑚(ℝ𝑁) 𝑝 = 2

equivalence and sometimes we will find that this is useful to know. So, we ask this question is

= . So, we will answer that question in the affirmative for , which 𝑊
0

𝑚,𝑝(Ω)  𝑊 𝑚,𝑝(Ω) Ω = ℝ𝑁

we will do next.


