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EXERCISES:

(1)

We will now do some exercises. So, the first one,

let and . Show that𝑇 ∈ 𝐷′(ℝ𝑁) φ,  ψ ∈ 𝐷 (ℝ𝑁)

𝑇(φ ∗ ψ) =
ℝ𝑁
∫ ψ(𝑦) 𝑇(τ

𝑦
φ) 𝑑𝑦

Well, , and therefore this makes sense that is𝑇(φ ∗ ψ) ∈ 𝐷 (ℝ𝑁)

=
ℝ𝑁
∫ φ(𝑦) 𝑇(τ

𝑦
ψ)  𝑑𝑦



So, what is ?𝑇(φ ∗ ψ)

Solution:

𝑇(φ ∗ ψ) = 𝑇 ∗ (φ ∗ ψ)∨)( ) 0( )

double chesh is back to the original function and therefore this is precisely, so by definition, by

definition of T star something.

(φ ∗ ψ)∨(𝑥) = (φ ∗ ψ)(− 𝑥) =
ℝ𝑁
∫ φ(− 𝑥 − 𝑦) ψ(𝑦)  𝑑𝑦 =

ℝ𝑁
∫ φ(𝑦 − 𝑥) ψ(− 𝑦)  𝑑𝑦

=
ℝ𝑁
∫ φ∨(𝑥 − 𝑦) ψ∨(𝑦)  𝑑𝑦 = (φ∨ ∗ ψ∨)(𝑥)

𝑇(φ ∗ ψ) = 𝑇 ∗ (φ∨ ∗ ψ∨)( )(0)

And now we know we can everything is a C infinity function with compact support, T is a

distribution so we can use the various commutative associative properties, so this is

= (𝑇 ∗ φ∨) ∗ ψ∨( )(0) = ( 𝑇 ∗ ψ∨) ∗ φ∨( )(0)

I have used both the commutativity and associativity properties.

=
ℝ𝑁
∫ (𝑇 ∗ φ∨)(− 𝑦) ψ∨(𝑦)  𝑑𝑦 =

ℝ𝑁
∫ (𝑇 ∗ ψ∨)(− 𝑦) φ∨(𝑦)  𝑑𝑦

=
ℝ𝑁
∫ (𝑇 ∗ φ∨)(𝑦) ψ∨(− 𝑦)  𝑑𝑦 =

ℝ𝑁
∫ (𝑇 ∗ ψ∨)(𝑦) φ∨(− 𝑦)  𝑑𝑦

=
ℝ𝑁
∫ (𝑇τ

𝑦
φ)   ψ (𝑦)  𝑑𝑦 =

ℝ𝑁
∫ (𝑇τ

𝑦
ψ)   φ (𝑦)  𝑑𝑦
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so that completes the solution of this exercise.
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(2)

Second one, let 𝑎, 𝑏 ∈ ℝ,   𝐿 = 𝑑2

𝑑𝑥2 + 𝑎 𝑑
𝑑𝑥  + 𝑏

be a differential operator with constant coefficient is the usual standard second order differential

operator. Let f, g be smooth functions such that

𝐿𝑓 = 𝐿𝑔 = 0,    𝑓(0) = 𝑔(0),   𝑓′(0) − 𝑔′(0) = 1

Define

𝐹(𝑥) =   𝑓(𝑥),    𝑖𝑓 𝑥 ≤ 0

=  𝑔(𝑥),    𝑖𝑓 𝑥 > 0.

does not matter where I put the equality, I have put it this way so this is what.

Show that is a fundamental solution for .− 𝐹 𝐿 𝑜𝑛  ℝ

Solution:

So, solution, so we just have to compute, so let



        φ ∈ 𝐷(ℝ)

so we have to show that 𝐿(− 𝐹) = δ,   𝑖. 𝑒.,  𝐿(− 𝐹)(φ) = φ(0).

So, we have to show this

𝐿(− 𝐹)(φ) =
ℝ𝑁
∫ − 𝐹 φ′′ − 𝑎φ′ + 𝑏φ( ) 𝑑𝑥

=
−∞

0

∫ − 𝑓 φ′′ − 𝑎φ′ + 𝑏φ( ) 𝑑𝑥 +
−∞

0

∫ − 𝑔 φ′′ − 𝑎φ′ + 𝑏φ( ) 𝑑𝑥 = 𝐼
1

+ 𝐼
2
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′

So, now let us compute each of these integrals and now so the first one

−∞

0

∫ − 𝑓 φ′′( )  𝑑𝑥 =  
−∞

0

∫ 𝑓′φ′ 𝑑𝑥 − 𝑓(0) φ′(0)  

=−
−∞

0

∫ 𝑓′′φ 𝑑𝑥 − 𝑓(0) φ′(0) + 𝑓′(0)φ(0)



so it is just a question of integration by parts, this is minus infinity to 0 of f phi dash dx and then

you have to take the boundary terms, there is no boundary term at minus infinity because phi has

compact support and so do all its derivatives.

−∞

0

∫ 𝑓 φ′ 𝑑𝑥 =
−∞

0

∫ 𝑓 φ′ 𝑑𝑥 + 𝑓(0) φ (0)

So, what is ? So, is the sum of these two, there is one more term with the b and therefore we𝐼
1

𝐼
1

will have to add all those three terms carefully. So, you have

𝐼
1

=−
−∞

0

∫ 𝑓′′ + 𝑎𝑓′ + 𝑏( )φ  𝑑𝑥 − 𝑓(0) φ′(0) + 𝑓′(0)φ(0) + 𝑎𝑓(0) φ (0) 

=− 𝑓(0) φ′(0) + 𝑓′(0)φ(0) + 𝑎𝑓(0) φ (0)

Similarly, you go through the same rigmarole so you get

will be equal to only now the limit of the integration you have, the upper limit will give you

nothing the lower limit will give you everything, so there will be a minus sign involved.

So, if you do the calculation you should get

𝐼
2

= 𝑔(0) φ′(0) − 𝑔′(0)φ(0) − 𝑎𝑔(0) φ (0)

So, 𝐿(− 𝐹)(φ) = 𝐼
1

+ 𝐼
2

=  φ′(0) 𝑔(0) − 𝑓(0)( ) − (𝑓′(0) − 𝑔′(0)) φ(0) + 𝑎( 𝑓(0) − 𝑔(0))  φ (0)

= φ(0) = δ(φ)

which is so that proves.δ
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(3)

Let 𝐿 =
|α|≤𝑚

∑ 𝑎
α
𝐷α,    𝑎

α
∈ ℝ.  

where a are constants so this is a constant coefficient differential operator of order m. Let E beα

a fundamental solution for L such that E belongs to C infinity of . So, this E is a distributionℝ𝑁

but if you restrict the distribution to the open set which is the complement of the origin you know

what that means then it coincides with that distribution generated by a C infinity function, this is

what we mean by saying

Let such that in a neighborhood of 0.    𝐸 ∈ 𝐶∞(ℝ𝑁\{0}). φ ∈ 𝐷(ℝ𝑁) φ ≡ 1

(a) Then a, so the first part let . Show that and belongs that means it is𝑃 = φ𝐸 𝑃 ∈ Ɛ′(ℝ𝑁)

a distribution with compact support and that where such a𝐿(𝑃) = δ + ς ς ∈ 𝐷(ℝ𝑁)

distribution which is, which when acted on by L gives you the Dirac plus a perturbation

of the Dirac distribution by a C infinity function with compact support is called a

parametrix for L. So, it is almost a fundamental solution but it is missing by means by the

addition of a C infinity function with compact support.
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solution: so so so ifψ ∈ 𝐷(ℝ𝑁) 𝑃(ψ) = 𝐸(ϕψ)

. Therefore, which is𝑠𝑢𝑝𝑝(ψ) ⊂ (𝑠𝑢𝑝𝑝 φ)𝑐 ⇒ φψ = 0 ⇒ 𝑃(ψ) = 0. 𝑠𝑢𝑝𝑝(𝑃) ⊂ 𝑠𝑢𝑝𝑝(φ)

compact so that is complete.⇒𝑃 ∈ Ɛ′(ℝ𝑁)
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So, now we have to compute

𝐿(𝑃) = 𝐿(φ𝐸) = φ
α| |≤𝑚
∑ 𝑎

α
𝐷α𝐸( ) +

α| |≤𝑚
∑

β≤α
∑ 𝐶

α,β
𝑎

α
𝐷βφ𝐷α−β𝐸

𝐶
α,β

= α!
(α−β)! β!



now we apply the Leibnitz formula. this is a common name, we have given this formula and

therefore.

So, the here there are no derivatives of that term I have taken out separately and in the secondφ

term is differentiated at least once, so that is the important thing. Now, what is the first term soφ

that is

is a fundamental solution of L, so that = φδ + ς = δ + ς

in the neighborhood of 0 andφ ≡ 1 {0} = 𝑠𝑢𝑝𝑝 δ.

And therefore, function that we have already seen earlier. So, this so we have this nowδ = φδ

we have to show that about the term. Now, in each term summoned in so each term you haveς ς

is differentiated at least once that isφ

in the neighborhood of 0. Soβ ≠ 0 ⇒ 𝐷βφ ≡ 0 𝐷α−β𝐸 ∈ 𝐶∞(ℝ𝑁\{0})

𝑎𝑛𝑑 𝐷βφ ∈ 𝐶∞(ℝ𝑁) ⇒ 𝐷α−β(𝐸) 𝐷β ∈ 𝐶
∞

(ℝ𝑁)

⇒ ς ∈ 𝐶∞(ℝ𝑁) 𝑠𝑢𝑝𝑝(ς) ⊂ 𝑠𝑢𝑝𝑝 φ

⇒ ς ∈ 𝐷(ℝ𝑁)

so we have shown that part of the exercise.
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Now, (b) deduce that if such that it means is given by a𝑇 ∈ 𝐷′(ℝ𝑁) 𝐿(𝑇) ∈ Ɛ(ℝ𝑁) 𝐿(𝑇)

distribution which is the distribution generated by a function. Then as well. So,𝐶∞ 𝑇 ∈ Ɛ(ℝ𝑁)

we have a distribution solution of this differential equation if the data is , namely f𝐿(𝑇) = 𝑓 𝐶∞

is then you have T the solution distribution solution is automatically a function, so that is𝐶∞ 𝐶∞

the power of this here. So, this comes because 𝐸 ∈ 𝐶∞(ℝ
𝑁

\{0})

solution: has compact support.𝐿(𝑃) ∗ 𝑇 = 𝑃 * 𝐿(𝑇), 𝑃

by the properties of the convolution and so P has compact support implies also has compact𝐿(𝑃)

support, and therefore is well defined. So, we can write this, this is no problem that is𝐿(𝑃) ∗ 𝑇

equal to

where . Now, , and therefore this= 𝑃 ∗ 𝑓 𝐿(𝑇) = 𝑓 ∈ Ɛ(ℝ𝑁) 𝑃 ∈ Ɛ′(ℝ
𝑁

) 𝑓 ∈ Ɛ(ℝ𝑁)

belongs . You have a distribution with compact support convolved with a function andƐ(ℝ𝑁) 𝐶∞

therefore that is well defined and you have this thing.
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On the other hand, you have

𝐿(𝑃) ∗ 𝑇 = 𝑇 * 𝐿(𝑃) = 𝑇 ∗ (δ + ς),

= 𝑇 ∗ δ + 𝑇 ∗ ς = 𝑇 + 𝑇 ∗ ς

⇒ 𝑇 = 𝑃 * 𝑓 − 𝑇 * ς ∈ Ɛ(ℝ𝑁)
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(c) deduce that every fundamental solution for f, for L is on .𝐶∞ ℝ𝑁\{0}

Solution, if is any fundamental solution then we have𝐸
1

𝐿(𝐸 − 𝐸
1
) = 0

⇒ 𝐸 − 𝐸 ∈ 𝐶∞(ℝ𝑁)

𝐸
1

= 𝐸 + 𝑔,  𝑔 ∈ Ɛ(ℝ𝑁)

⇒ 𝐸
1

∈ 𝐶∞(ℝ𝑁\{0})

So, this is a very nice result what we have proved is a partial, one way I mean we have proved

the following fact.
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So, remark we have proved that if is a differential operator with constant coefficients such that𝐿

a fundamental solution E which is in then =f . So, we∃ 𝐶∞(ℝ𝑁\{0}) 𝐿(𝑇) ∈ Ɛ(ℝ𝑁) ⇒ 𝑇 ∈ Ɛ(ℝ𝑁)

have shown some kind of regularity theorem.

So, such an operator, converse is anyway true because if you, if this property holds or in fact it is

true for any omega that we can, we have not shown that, it is true if wherever the f is T will𝐶∞,

be there, so if it is true, if it is in where is contained in then T will be also𝐶∞ 𝐸(Ω) Ω ℝ𝑁\{0}

a so we have not shown that portion, we have only shown it for whole of .𝐶∞(Ω) ℝ𝑁

So, such an operator is called hypo elliptic. So, examples

is a hypo elliptic operator, what is its fundamental solution, heavy side function which except𝑑
𝑑𝑥

at the origin is a piecewise constant and therefore it is . What about the Laplacian? Again,𝐶∞

either it is which has the only singularity at the origin or to the , N-2 which again𝑙𝑜𝑔  |𝑥| 1
|𝑥|

𝑁
2

is singular only at the origin, and therefore are all hypo elliptic.

And now we have, we showed that in

if So, if in general N how do you do that?𝑁 = 1, 𝑑𝑇
𝑑𝑥 = 0 ⇒ 𝑇 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.



Suppose ,𝑁 > 1, ∂𝑇
∂𝑥

𝑖
= 0 1 ≤ 𝑖 ≤ 𝑁 ⇒ ∆(𝑇) =

𝑖=1

𝑁

∑ ∂2𝑇

∂𝑥
𝑖
2 = 0

   ⇒ 𝑇 ∈ Ɛ(ℝ𝑁) ⇒ 𝑇 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

So, that is how you prove it in higher dimensions and you use this particular result.
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So, then we will do the next

exercise 4, find all distribution solutions of the equation

in𝑢′′ − 𝑢𝑣 = δ′ ℝ

Solution, so we have to find all solutions of this equation. So,

let 𝑣′ = 𝑢 ,     𝑣′′′ − 4𝑣′ = δ′

⇒ (𝑣′′ − 4𝑣)′ = δ′ ⇒ 𝑣′′ − 4𝑣 = δ + 𝑐

⇒ (𝑣′′ − 4𝑣) = 0∈ 𝐶∞(ℝ ) ⇒ 𝑣 ∈ 𝐶∞(ℝ )

because the fundamental solution of this operator is outside the origin, you know what it is𝐶∞

from the previous exercise for this particular operator. And this is a particular case of this excise,

so this function other than at the origin it is and so this hypo elliptic operator and therefore if𝐶∞

you have anything equal to then the solution will also be a function. So, we are just going𝐶∞ 𝐶∞

to apply that particular function. So, this means that we know how to solve that then.

⇒ 𝑣 = 𝐶
1
𝑒2𝑡 + 𝐶

2
𝑒 −2𝑡



⇒ (𝑣′′ − 4𝑣) = 0 ⇒𝑣 = 𝐶
1
𝑒2𝑡 + 𝐶

2
𝑒 −2𝑡 − 𝐶

4

if you solve the differential equation the classical way so that is all you get.

Now, we are looking at the fundamental solution

a=0, b=-4(𝑣′′ − 4𝑣) = δ    𝐿 = 𝑑2

𝑑𝑥2 − 4

in the previous solution, so let 𝑓, 𝑔 ∈ 𝐶∞(ℝ ) 𝐿(𝑓) = 𝐿(𝑔) = 0 𝑓(0) = 𝑔(0),

𝑓′(0) = 𝑔′(0) = 1 

and then you take ,𝑔 ≡ 0 𝑓 = α𝑒2𝑡 + β𝑒−2𝑡,    α + β = 0,     2α − 2β = 1 

α − β = 1
2 α = 1

4 =− β
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So, what is the fundamental solution? So, fundamental solution is given by

𝐹 = 1
4 𝑒−2𝑡 − 1

4 𝑒2𝑡,     𝑡 < 0

= 0              ,      𝑡 ≥ 0

And therefore, you get𝑣 = 𝐹 + 𝐶
1
𝑒2𝑡 + 𝐶

2
𝑒−2𝑡 − 𝐶

4 ,

𝑢 = 𝑣′ = 𝐹′ + 2𝑡 𝐶
1
𝑒2𝑡 − 2𝑡 𝐶

2
𝑒−2𝑡

So, now we just only have to compute what is .𝐹′

So, 𝐹′(φ) =− 𝐹(φ) = 1
4

−∞

0

∫ (𝑒2𝑡 − 𝑒−2𝑡)φ′(𝑡)  𝑑𝑡

=− 1
4

−∞

0

∫ (2𝑒2𝑡 + 2)φ (𝑡)  𝑑𝑡

And then there will be no boundary terms because you just have to evaluate it at 0 is thereφ(0)

this is also give you 1, this will give you -1 and therefore that will get cancelled, so there are no

boundary terms, no boundary terms. So, I have just done the integration by parts. So, you have

that u equal to, so all the solutions,



𝑢 = 𝐹′ + 2𝐶
1
𝑒2𝑡 − 2𝐶

2
𝑒−2𝑡 ,  𝐶 1,  𝐶 2 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 .

𝐹′ =− 1
2 (𝑒2𝑡 + 𝑒−2𝑡),    𝑡 < 0

= 0                   ,   𝑡 ≥ 0.

so this completes all the solutions of that differential equation. So, with this we will close this

chapter, we have come to the end of the theory of distributions as I, as much as I wanted to

present. So, we will next start the chapter on Sobolev spaces.


