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Tempered distributions: 

Now, we will talk about tempered distributions, this is the class of distributions to which we will 

extend the definition of the Fourier Transform. So, we saw that 

       ฀(ℝ฀) ⊂ ฀(ℝ฀) ⊂ Ɛ(ℝ฀) 

 and this we know is dense, this is also dense.  

฀(ℝ฀) is also dense in ฀(ℝ฀) suppose you take 

    𝜑 ∈ ฀(ℝ฀)   𝜑 ≡ 1 on the unit ball with centre at the origin of course, and you set  

      𝜑฀(฀) = ฀(฀
฀

).  
 

Let  𝜑 ∈ ฀(ℝ฀) 



it is easy to check that which is now C infinity function with compact support therefore it is in    

in ฀(ℝ฀) 

         𝜑฀฀ → ฀  ฀(ℝ฀) 

which is now C infinity function with compact support therefore it is in  

         Ɛ′(ℝ฀) ⊂ ฀′(ℝ฀) ⊂ ฀′(ℝ฀)      

So, these are this is the space of all distributions, this is the base space of distributions with 

compact support and this we call as a space of tempered distributions. So, tempered definition 

this subspace ฀′(ℝ฀)  of  ฀′(ℝ฀) called the space of tempered distributions. So, now let us look 

at examples of template distributions.  
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    Example 1: 

      ฀ ∈ Ɛ′(ℝ฀) ⇒ ฀ ∈ ฀′(ℝ฀) 

as we have just shown, so in particular the Dirac distribution is a tempered distribution.   
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    Example 2:  

 Let 𝜇 be a measure on ℝ฀ which is slowly increasing, what does this mean? That is there exists 

a positive integer k such that you have 

       ∫ℝ฀ ฀฀(฀)(1+|฀|2)฀ < +∞ 

So, in particular any finite measure because k can be taken as 0 is slowly increasing, Lebasque 

measure is slowly increasing, because you know ฀ > ฀
2
. So, now if such a measure which is 

slowly increasing you define  

        ฀฀(฀) = ∫ℝ฀ ฀ ฀฀, ∀฀ ∈ ฀(ℝ฀) 

        |฀฀(฀)| = ฀฀฀฀∈ℝ฀  (|฀(฀)|(1 + |฀|2)฀) ∫ℝ฀  ฀฀(฀)(1+|฀|2)฀  < +∞  
 

 

And therefore, this is finite and also it shows that if  

฀฀ →  ฀฀  ฀(ℝ฀) ⇒ ฀฀(฀฀) → 0. 
so this implies that  



       ⇒ ฀฀ ∈ ฀′(ℝ฀) 

So, any measure which produces this.  
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Then 3, this very important,  

   Example 3: 

1 ≤ ฀ ≤ ∞ 

then   ฀฀(ℝ฀) ⊂ ฀′(ℝ฀) in fact it is a continuous inclusion also. So, if you take f that is first 

take, so f you have  

        ฀ ∈ ฀฀(ℝ฀)  𝜑 ∈ ฀ (ℝ฀) 

so it is a locally integral function as a distribution,   

        ฀฀(฀) = ∫ℝ฀ ฀฀ ฀฀, ∀฀ ∈ ฀(ℝ฀) 

the definition ฀฀(฀)  is of course which extends the definition of distribution is integral  

฀ ฀ ฀฀ overall.  

So, let us assume that  1 < ฀ < ∞ and  

         1
฀

+ 1
฀′ = 1 

          ฀ > ฀
2฀′ ⇒ ฀(฀) = (1 + |฀|2)−฀ ∈ ฀฀′(ℝ฀) 

 



So, by (())(08:29) inequality you have 

           |฀฀(฀)| ≤ ฀฀฀฀∈ℝ฀  ((1 + |฀|2)฀|฀(฀)|) ||฀||฀ ||฀||฀′ 

 

So, this shows that this is finite and  

𝜑฀ → 0,฀฀  ฀ (ℝ฀)  ⇒ ฀฀(฀฀) → 0 .  

So, this also shows that f and if  

฀฀  → ฀ ฀฀ ฀฀(ℝ฀) ⇒ ฀฀฀(฀) → ฀฀(฀)  ∀  ฀ ∈ ฀(ℝ฀). 

 And this is the sequential continuity which we will use for the different for the linear maps as 

we already said and on the short space and therefore you have that  

฀ →  ฀฀ is continuous from  ฀฀(ℝ฀) into ฀′(ℝ฀) , so you have that all ฀฀ functions are in fact 

in ฀′(ℝ)  Now, if  

      ฀ = 1,   |฀฀(฀)| ≤  ||฀||∞ ||฀||1 
   so there is nothing to do, so its automatically we chose the continuity, and  

      ฀ = ∞,   | ฀฀(฀)| ≤ ฀฀฀฀∈ℝ฀  ((1 + |฀|2)฀|฀(฀)|) ||฀||∞ ||฀||1, ฀ > ฀
2
 

And this again tells you that this is in ฀′. So, this completely establishes our claim that ฀฀ for all 

1 ≤ ฀ ≤ ∞1 is in fact embedded in ฀′(ℝ฀) continuously.  
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Definition: 

So, now we are going to define definition let  

  ฀ ∈ ฀′(ℝ฀) then the Fourier Transform of T denoted ฀̂ is defined by the  

        ฀̂(฀) = ฀(฀̂)   ∀฀ ∈ ฀(ℝ฀). 

and therefore this makes sense, so this definitely makes sense and we know that f going to f hat 

is a continuous from 

         ฀ → ฀̂     ฀(ℝ฀) → ฀(ℝ฀)       ⇒ ฀̂ ∈ ฀′(ℝ฀) 



So, it is a tempered distribution automatically. So, this is the definition, so this is what we could 

not do because of the Paley Wiener theorem for all distributions, because you had when you 

want to make this definition 𝜑̂  refused to be inside the space of continuous function C infinity 

functions with compact support, whereas this Schwartz space is like that and therefore we can 

use this definition.  

           ฀(ℝ฀) → ฀1(ℝ฀) → ฀′(ℝ฀) 

So, we seem to have two definitions of the Fourier Transform, one is the definition because  

          ฀(ℝ฀) ⊂ ฀1(ℝ฀) 

gets a definition of Fourier Transform from ฀1, but ฀(ℝ฀) is also contained in ฀′(ℝ฀) the  and 

therefore ฀′(ℝ฀) gives you by the above definition (())(14:14) this, so we want to know that 

these two are not different. 

          ฀ ∈ ฀(ℝ฀)    ฀ ∈ ฀(ℝ฀) 

but we have proved the Weak Parseval Relation for functions in ฀(ℝ฀) this is equal to  

          ฀฀̂(฀) = ฀฀(฀̂) = ∫ℝ฀ ฀ ฀̂ ฀฀ = ∫ℝ฀  ฀̂  ฀ ฀฀ = ฀฀̂(฀). 
So,  ฀฀̂ = ฀฀̂ 

 

namely if  ฀ ∈ ฀(ℝ฀) considered as a tempered distribution, then the Fourier Transform of it is 

nothing but the Fourier Transform generated by the usual Fourier Transform from ฀1, therefore 

there is no ambiguity both definitions coincide and therefore, that is fine.  
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Theorem: 

So, now let us prove the following theorem which generalizes the properties of Fourier 

Transform of functions, so let ฀ ∈ ฀′(ℝ฀) 

and let 𝛼 be a multi index, then 

           ฀฀฀̂ = (−2฀฀)|฀|(฀฀฀)̂  

 

  So, (฀฀฀)  is again a same tempered distribution, because if you have (฀฀฀)   acting on 

any f this is equal to ฀(฀) ฀฀, this is the distribution definition for the multiplication base 

infinity function, but multiplication by monomials will still keep f into itself, so this makes sense 

and of course you have the convergence properties, therefore this defines a temporal distribution.  

So, (฀฀฀)  is again a tempered power distribution and therefore ฀฀฀, so exactly like when 

you want to differentiate you multiply the distribution by a pronominal and then take the Fourier 

Transform and put an appropriate multiple of −2฀฀. And (())(16:43) you will have  

             ฀฀฀̂ = (2฀฀)|฀| ฀฀ ฀̂  

 ฀̂ is now our tempered distribution you can always multiply by means of monomials. So, let us 

prove this,  



Proof: 

so let ฀ ∈ ฀(ℝ฀) then 

          ฀฀฀̂(฀) = (฀฀฀)(฀̂) = ฀(฀฀฀̂) 

                      = 1(2฀฀)|฀| ฀(฀฀฀̂) = 1(−2฀฀)|฀| ฀̂(฀฀฀)  

                       = 1(−2฀฀)|฀| ฀฀฀̂(฀)  

 

And therefore, from this you cross multiply you get your answer, other statement follows 

similarly exercise. So, you can just check it, it is a trivial thing, so you.  
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Theorem: 

Now, theorem again, so we know that the Dirac distribution is very special and so  

Let 𝛿 denote the Dirac distribution concentrated at the origin on ℝ฀, then you have  

          𝛿 = 1  



1 is a constant function constant function is slowly increasing, so we integral see we know that 

that is slowly increasing function, so therefore this is again in template distribution, so 𝛿 = 1  

Now,  

        𝜕𝛿𝜕฀฀̂
= 2฀฀฀฀

  is again a polynomial so it is fine, so then 

            1̂ = ฀ 

Proof: 

So, proof let 𝜑 ∈ ฀(ℝ฀)   
          ฀̂(฀) = ฀(฀̂) = ฀̂(0) = ∫ℝ฀ ฀(฀) ฀฀ = ฀1(฀)  

         𝜕𝛿𝜕฀฀̂
= 2฀฀฀฀฀̂ = 2฀฀฀฀

 

         1̂(฀) = ∫ℝ฀ ฀̂(฀) ฀฀ = ฀(0) = ฀(฀) 

by the Fourier inversion formula and then that is equal to delta phi and therefore we have all 

these with nice results. So, finally we conclude this section with one more question of 

consistency.  
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So, you have ฀(ℝ฀), we already saw had two definitions one from ฀′  and one from ฀1, and 

we saw the dose two definitions of the Fourier Transform were consistent. Now, you have  

             ฀(ℝ฀) ⊂ ฀2(ℝ฀) ⊂ ฀′(ℝ฀)  

 you have two definitions of the Fourier Transform, one considering it as ฀′, the other is got by 

density namely the isometry P which we defined last time, I am using the Fourier Inversion 

formula and therefore, we want to know if these two are the same.  

So, you have let   ฀ ∈ ฀2(ℝ฀)  ฀฀ ∈ ฀(ℝ฀)   ฀฀ → ฀ ฀฀ ฀2(ℝ฀) 

         ฀2(ℝ฀) ⊂ ฀′(ℝ฀)       ฀฀ → ฀ ฀฀   ฀′ (ℝ฀)    ∫ℝ฀ ฀฀฀  ฀฀ → ∫ℝ฀ ฀฀ ฀฀,  𝜑 ∈ ฀(ℝ฀) 



because Fourier Inversion formula so you can think of 

         ⇒ ฀฀̂ → ฀̂  in ฀′(ℝ฀)      ∫ℝ฀ ฀฀฀̂  ฀฀ → ∫ℝ฀ ฀฀̂ ฀฀,  𝜑 ∈ ฀(ℝ฀) 

         ⇒ ∫ℝ฀ ฀฀̂฀  ฀฀ → ∫ℝ฀ ฀̂฀ ฀฀, 
          ฀(฀฀) → ฀(฀)  in    ฀2 (ℝ฀) 

          ⇒ ฀(฀฀) → ฀(฀)  ฀฀    ฀′ (ℝ฀) 

But ฀(฀฀) is what? because this is the Fourier Transform  

         ⇒ ฀(฀฀) = ฀฀̂ → ฀(฀)  ⇒ ฀(฀) = ฀̂. 

 

 So, that settles it. So, we will stop here, we will now do some more exercises before coming to 

an end in this chapter. 
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