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We were discussing the short space and then we said that it is very congenial with respect to the

Fourier transform. So, let us prove the following theorem.



Theorem: Let then as well, further the map is a continuous𝑓 ∈ 𝑆(ℝ𝑁) 𝑓
^

∈ 𝑆(ℝ𝑁) 𝑓 → 𝑓
^

linear map of into itself. So,𝑆(ℝ𝑁)

proof. So, we will do it in some steps.

Step 1: let . So, as the first step is going to belong to it𝑓 ∈ 𝑆(ℝ𝑁) ⇒ 𝑓 ∈ Ɛ (ℝ𝑁) 𝑆(ℝ𝑁)

better belong to So, we are going to show first that if . So, is the standard kƐ (ℝ𝑁) Ɛ (ℝ𝑁) 𝑒
𝑘

basis vector in . So, what is ?ℝ𝑁 𝑒
𝑘

𝑒
𝑘

= (0, 0, 0... 1..., 0, 0)  ,  1 𝑖𝑛 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,    1 ≤ 𝑘 ≤ 𝑁.

Then

𝑓
^
(ξ+ℎ𝑒

𝑘
)−𝑓

^
(ξ)

ℎ = 1
ℎ

ℝ𝑁
∫ 𝑒

−2π𝑖𝑥·(ξ+ℎ𝑒
𝑘
)

− 𝑒−2π𝑖𝑥·ξ( )𝑓(𝑥) 𝑑𝑥

and that is equal to we apply the mean value theorem to this differentiable function.

So, what is this is can be taken as the derivative at some intermediary point so, what is the

derivative? That is

= (− 2π𝑖)
ℝ𝑁
∫ 𝑒

−2π𝑖𝑥·(ξ+θℎ𝑒
𝑘
)
 𝑥

𝑘
𝑓(𝑥) 𝑑𝑥

So, this is just differentiated with respect to the k th values is . So, I get the𝑒−2π𝑖𝑥·ξ𝑥
𝑘
𝑓(𝑥) 𝑥

𝑘

here and that is what we have here. Where and it will depend on x𝑒−2π𝑖𝑥·ξ𝑥
𝑘
𝑓(𝑥) 0 < θ < 1

and h.

So, now the integrand converges to that is point wise as and it is bounded𝑒−2π𝑖𝑥·ξ𝑥
𝑘
𝑓(𝑥) ℎ → 0

by so, mod less of this exponential here is just 1 so by |𝑥
𝑘
𝑓(𝑥)|.



But . So, just multiplying by a monomial and that of course is𝑓 ∈ 𝑆(ℝ𝑁) 𝑥
𝑘
𝑓(𝑥) ∈ 𝑆(ℝ𝑁)

continuously embedded in the . So, this is integrable it converges point wise. So, by the𝐿1(ℝ𝑁)

dominated convergence theorem, you have that the limit.

So, if you take the limit on the left hand side that will give you

∂𝑓
^

∂ξ
𝑘

(ξ) = (− 2π𝑖)
ℝ𝑁
∫ 𝑒−2π𝑖𝑥·ξ𝑥

𝑘
𝑓(𝑥) 𝑑𝑥

as we already saw belongs to . So, that is in . So, this is the Fourier transform of𝑆(ℝ𝑁) 𝐿1(ℝ𝑁)

some function. So, RHS is the Fourier transform of function namely and hence is in𝐿1 𝑥
𝑘
𝑓(𝑥)

fact uniformly that is not necessarily for the moment continuous.



(Refer Slide Time: 6:40)

So, we can iterate this, iterating we get for all

multi index you have∀α 𝐷α𝑓
^
(ξ) = (− 2π𝑖)|α|     (𝑥α𝑓(𝑥))

^
(ξ)



So, if you want to differentiate the Fourier transform, you first multiply the function by a

corresponding monomial and then take the Fourier transform that is now , we have theƐ (ℝ𝑁)

dual. So, this implies and this is uniformly continuous to this .⇒ 𝑓
^
 ∈ Ɛ (ℝ𝑁)

Step 2, so we will show

2π𝑖ξ
𝑗
𝑓
^
(ξ) = ∂𝑓

∂𝑥
𝑗

^
(ξ)

So, this is nothing which is by definition, because it is just the function. So, this is again∂𝑓
∂𝑥

𝑗
(𝑥)

=
ℝ𝑁
∫ 𝑒−2π𝑖𝑥·ξ ∂𝑓

∂𝑥
𝑗

(𝑥) 𝑑𝑥

So, you see the duality here. So, when you want to differentiate the Fourier transform you

multiply the function by a monomial and then take the Fourier transform.

If you want to differentiate the function and take the Fourier transform then you take the Fourier

transform multiply by appropriate monomials. So, this is the duality between these two

properties and so. Now, this is essentially a consequence of Greens theorem or integration by

parts. So, we have

∂𝑓
∂𝑥

𝑗
(𝑥) ∈ 𝑆 (ℝ𝑁) ⊂ 𝐿1(ℝ𝑁).

And so, we have by the dominated convergence theorem we get, so by the dominated

convergence theorem, so you get the

ℝ𝑁
∫ 𝑒−2π𝑖𝑥·ξ ∂𝑓

∂𝑥
𝑗

(𝑥) 𝑑𝑥 =
𝑅 ∞
lim
→ 𝐵(0;𝑅)

∫ 𝑒−2π𝑖𝑥·ξ ∂𝑓
∂𝑥

𝑗
(𝑥) 𝑑𝑥



Because you think of this function as integral over with multiplied here. Then pointℝ𝑁 𝜒
𝐵(0;𝑅)

wise it converges to is it is bounded by a integrable function.

So, by the dominated convergence theorem, you get this. So, we just have to look at this bounded

domain integral and see what the limit is going to be. So,

𝐵(0;𝑅)
∫ 𝑒−2π𝑖𝑥·ξ ∂𝑓

∂𝑥
𝑗

(𝑥) 𝑑𝑥 =
𝐵(0;𝑅)

∫ 𝑒−2π𝑖𝑥·ξ ∂𝑓
∂𝑥

𝑗
(𝑥) 𝑑𝑥

so I am going to differentiate with respect to. So, we have to differentiate.

So, you get a minus sign first when you changing the derivative on the side, but when you bring

back the when you differentiate you get and you have differentiate with respect to .2π𝑖 𝑥
𝑗

=+
𝐵(0;𝑅)

∫ 2π𝑖ξ
𝑗 
𝑒−2π𝑖𝑥·ξ𝑓(𝑥) 𝑑𝑥 +

|𝑥|=𝑅
∫ 𝑒−2π𝑖𝑥·ξ𝑓(𝑥)

𝑥
𝑗

𝑅  𝑑𝑥

So, this is what you get. So, that is what you will get? When you do the plus you have a

boundary term. Now, what is the boundary term?

That is the normal outward normal in the j direction, but this is a ball center origin and therefore

the normal is just the radius vector and you have to divide it, to make it the unit normal divided

by the length of the radius. So, this is what you will get when you write Greens theorem.
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So, now, we will estimate this boundary term. So,

1
𝑅

|𝑥|=𝑅
∫ 𝑒−2π𝑖𝑥·ξ𝑓(𝑥)𝑥

𝑗
 𝑑σ(𝑥)

||||

||||
≤ 1

𝑅
|𝑥|=𝑅

∫ |𝑥
𝑗
| |𝑓(𝑥)|  𝑑σ(𝑥)

Now, we are going to write this is less than or equal to

≤
𝑀

𝑘

𝑅
|𝑥|=𝑅

∫ |𝑥
𝑗
| (1 + |𝑥|2)−𝑘 𝑑σ(𝑥)

What am I done I multiplied by and and we have that(1 + |𝑥|2)𝑘 (1 + |𝑥|2)−𝑘

|𝑓(𝑥)|(1 + |𝑥|2)𝑘 ≤ 𝑀
𝑘

This is the Schwarz space properties since and you can choose any k you like. So,𝑓 ∈ 𝑆(ℝ𝑁).

this constant k number k is independent. Now, we can choose whatever we like and therefore,

you have. But what do you know about



put
𝑀

𝑘

𝑅
|𝑥|=𝑅

∫ |𝑥
𝑗
| (1 + |𝑥|2)−𝑘 𝑑σ(𝑥) =

𝑀
𝑘
𝑅𝑁−1

(1+𝑅2)𝑘
|𝑦|=1

∫ |𝑦
𝑗
|   𝑑σ(𝑦) 𝑥

𝑅 = 𝑦

So, now this is a constant is integrable function and then this will|𝑦
𝑗
|

→ 0    𝑎𝑠   𝑅 → ∞  𝑖𝑓   𝑘 𝑙𝑎𝑟𝑔𝑒 𝑒𝑛𝑜𝑢𝑔ℎ,  

and we have the freedom to choose k and therefore, we choose k as large as you need. So, this

boundary term goes to 0 and then therefore you get, therefore you have proved this result here.

2π𝑖ξ
𝑗
𝑓
^
(ξ) = ∂𝑓

∂𝑥
𝑗

^
(ξ).  

So, we as R tend to infinity we have that.

Step 3.     So, iterating we get

(2π𝑖ξ)β 𝑓
^
(ξ) = 𝐷β𝑓

^
(ξ)

So, combining this with step 1, so you get the

            ξβ𝐷α𝑓
^
(ξ) = (−2π𝑖)|α|

(2π𝑖)β    (𝐷β(𝑥α𝑓(𝑥)))
^

(ξ)

And this again is in and therefore, this is𝑆(ℝ𝑁)

bonded  in and this proofs. So, this⇒ ℝ𝑁   , ∀ α, β

 𝑓
^

∈ 𝑆(ℝ𝑁)

Step 4:

for k large enough.𝐶 = ∫ 𝑑𝑥

(1+|𝑥|2)𝑘



𝑠𝑢𝑝
ξ∈ℝ𝑁 ξβ𝐷α𝑓

^
(ξ)| | ≤ 𝐶(2π𝑖)|α|−|β|   𝑠𝑢𝑝

𝑥∈ℝ𝑁 (1 + |𝑥|2)𝑘 𝐷β (𝑥α𝑓(𝑥))| |

and therefore,

⇒ 𝑓
𝑛

→ 0  𝑖𝑛  𝑆(ℝ𝑁) ⇒ 𝑓
𝑛

^
→ 0   𝑖𝑛  𝑆(ℝ𝑁)

map to is continuous.⇒ 𝑓 𝑓
^

So, that proves that theorem continuous.
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So, now we have the following corollary.

Corollary:(Rieman Lebesgue lemma): This is called the Riemann Lebesgue lemma, and there

are several versions of this Riemann Lebesgue lemma. So, this is one way of stating it. So,

then is uniformly continuous this we already saw and vanishes set infinity. So, 𝑓 ∈ 𝐿1(ℝ𝑁) 𝑓
^

Proof:  So, let if this we have just shown that 𝑓 ∈ 𝑆(ℝ𝑁)

vanishes at infinity and is in So, it is in particular continuous and 𝑓
^

∈ 𝑆(ℝ𝑁) ⇒ 𝑓
^

 Ɛ(ℝ𝑁)

vanishes at infinity, implies continuous and vanishes at infinity implies uniformly continuous.

So, now  𝑓 ∈ 𝐿1(ℝ𝑁)

so we already know, is dense and consequently so Ɗ(ℝ𝑁) ⊂  𝑆(ℝ𝑁) ⊂  𝐿1(ℝ𝑁)

in𝑓
𝑛

∈ 𝑆(ℝ𝑁),   𝑓
𝑛

→ 𝑓  𝐿1(ℝ𝑁)

Then, we have already seen

|𝑓
𝑛

^
(ξ) − 𝑓

^
(ξ)| ≤ ||𝑓

𝑛
− 𝑓||

1
→ 0



⇒𝑓
𝑛

− 𝑓||
∞

≤ 𝑓
𝑛

− 𝑓||
1

→ 0

uniformly. 𝑓
𝑛

^
→ 𝑓

^

So, if it converges uniformly that means, is continuous and vanishes at infinity because see𝑓
^

the space of continuous functions which vanish at infinity is a Bernard space for the sup.

Now and therefore, at is continuous and vanishes at infinity because it is in and𝑓
𝑛

^
𝑆(ℝ𝑁)

consequently is also continuous vanishes at infinity in place it is uniformly continuous. So,𝑓
^

this is the Riemann Lebesgue lemma.


