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SCHWARTZ SPACE:

Today we will discuss the Schwarz space. So if

.𝑓 ∈ 𝐿1(ℝ𝑁)

We define

𝑓
^
(ξ) =

ℝ𝑁
∫ 𝑒−2π𝐼𝑥·ξ𝑓(𝑥)𝑑𝑥 ⇒ 𝑓

^
∈ 𝐿∞(ℝ𝑁)

And in fact, it was a uniformly continuous function.

So and it need no it is bounded, but it need not be integrable. So it does not, we are now

looking because ultimately, we want to define the Fourier transform of a distribution. So we

want some subset of which would be stable under the Fourier transform that means𝐿1(ℝ𝑁)

if you take a function in that space, the Fourier transform must also belong to that space.

Now, the first space which comes to our mind is our favourite space, namely the space of test

functions, but of is not stable under the Fourier transform. So let us prove theƊ(ℝ𝑁)

following theorem. So, there is a very particular case, a partial result of a big theorem known

as the Payley–Wiener theorem. Which is a more comprehensive and precise result, we are

going to just through a portion of it.

Theorem(Payley Wiener):    Let we are just in one dimension, then𝑓 ∈ 𝐶
𝑐
(ℝ ).

is analytic.𝑓
^



Proof: So even if you have a continuous function with compact support, then the

Fourier transform is analytic. And if it is analytic function, it cannot have compact support,

because if it is if it vanishes on an open set, then analytic function has to vanish everywhere.

So, this shows that so in particula is not stable under the Fourier transform.𝐶
𝑐
(ℝ) Ɗ(ℝ)

And this, the Paley–Wiener theorem essentially extends all this to N dimensions and in fact

gives you a kind of growth conditions on the Fourier transform also. Anyway, we will prove a

very simple result here. So, we have , which is obviously contained in .𝑓 ∈ 𝐶
𝑐
(ℝ ) 𝐿1(ℝ )

Because continuous functions with compact support are of course integral.

So,

𝑓
^
(ξ) =

ℝ

∫ 𝑒−2π𝐼𝑥ξ𝑓(𝑥)𝑑𝑥

𝑓
^
(ξ) =

ℝ

∫ 1 +
𝑛=1

∞

∑ (−2π𝑖𝑥ξ)𝑛

𝑛!
⎡⎢⎢⎣

⎤⎥⎥⎦
𝑓(𝑥)𝑑𝑥

So, now, you have the let us assume that support of f is contained in some big interval say

,𝑠𝑢𝑝𝑝(𝑓)⊂ [− 𝐴, 𝐴 ] 𝑓| | ≤ 𝑀

And since f is on of compact support, we have the F is bounded as well.

𝑓
^
(ξ) =

−𝐴

𝐴

∫ 1 +
𝑛=1

∞

∑ (−2𝑖𝑥π)𝑛

𝑛! ξ𝑛⎡⎢⎢⎣

⎤⎥⎥⎦
𝑓(𝑥)𝑑𝑥

So, to get the we would like to do a term by term integration of this for that we have to do

some work. So, let us look at that. So, what can we say about So,(−2π𝑖𝑥ξ)𝑛

𝑛!
|||

|||

(−2π𝑖𝑥)𝑛

𝑛! 𝑓(𝑥)|||
||| ≤ 𝑀 (2π𝑖𝐴)𝑛

𝑛! = 𝑀
𝑛



So, M is a common factor and therefore, you have is finite because it is just an∑ 𝑀
𝑛

< ∞

exponential series. So, it always converges and therefore this is finite. So, you have that the

infinite series

converges uniformly on .           1 +
𝑛=1

∞

∑ (−2𝑖𝑥π)𝑛

𝑛! ξ𝑛⎡⎢⎢⎣

⎤⎥⎥⎦
𝑓(𝑥) [− 𝐴,  𝐴 ]

This is called the Weierstrass M-test. So, you uniformly bound all the terms by terms of a

convergent series then the term goes uniformly.
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And therefore, you can do once you have uniform convergence you can allow term by term

integration. So, you have

𝑓
^
(ξ) =

ℝ
∫ 𝑓(𝑥)𝑑𝑥 +

𝑛=1

∞

∑
ℝ
∫ 𝑥𝑛𝑓(𝑥)𝑑𝑥( ) (−2π𝑖ξ)𝑛

𝑛! ξ𝑛

So, admits a power series expansion implies if is analytic and therefore, you see is𝑓
^

𝑓
^

Ɗ(Ω)

not also going to work. So, we want to find a space which is between the two in some sense



so, then that is space which we call the Schwarz space this is called the space of uniformly

rapidly decreasing functions at infinity. That is they go to zero along with all derivatives

faster than any polynomial.

Schwartz Space:

Definition: formal definition the Schwarz space , or the space of rapidly𝑆(ℝ𝑁)

decreasing functions is the collection of all C infinity, C infinity functions such𝑓 ∈ Ɛ(ℝ𝑁)

that

|𝑥| ∞
lim
→

𝑥β𝐷α𝑓(𝑥)| | = 0    , ∀ 𝑚𝑢𝑙𝑡𝑖 − 𝑖𝑛𝑑𝑒𝑥 α  & β
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So, the following facts follow immediately from the definition. So,

belongs to For every polynomial and for every𝑓 ∈ Ɛ(ℝ𝑁) 𝑓 ∈ 𝑆(ℝ𝑁) ⇔ ∀ 𝑃(𝑥)

differential operator with constant coefficients , we have is bounded in𝐿 𝑃(𝑥)𝐿(𝑓(𝑥)) ℝ𝑁.

So, you can so, bounded for every polynomial multiplication they all derivatives is the same

as saying that they all go to zero.

Because if for instance in one dimensions if I want if of

0 as𝑥𝑓(𝑥)     𝑥2𝑓(𝑥)      𝑥𝑓(𝑥)| | ≤ 𝑠𝑢𝑝 𝑥2𝑓(𝑥)
𝑥

|||
||| → 𝑥 → ∞

And therefore, you see you can always by taking higher and by higher powers being

bounded you can show that all the previous ones go to zero so, this these two are equivalent.

Another the equivalent way of looking at it is

is in for every integer k and multi index the function𝑓 ∈ Ɛ(ℝ𝑁) 𝑓 ∈ 𝑆(ℝ𝑁) ⇔ ∀ α

is bounded in .(1 + |𝑥|2)𝑘𝐷α𝑓(𝑥) ℝ𝑁

Why it is true? You can show that any monomial to the or any monomial is|𝑥| |α| 𝑥α

bounded ten the x can be bounded by the supremum of a thing of such a function for highα,

enough k.



And therefore, automatically we come in to the previous one. So, that is the reason and then

once you do it for every monomial it is true for every polynomial because it is just a finite

linear combination. So, these two conditions are equivalent definitions of the Schwarz space.

So, we will remember these things.

So, just think about it and try to convince yourself by your own arguments that these are true.

So, now, let us look at some examples. So,

(1) N=1,   Any is trivially in .φ ∈ Ɗ(ℝ𝑁) 𝑆(ℝ𝑁)

because after the complexity everything vanishes and therefore, everything is bounded all

derivatives. All multiplication by any polynomial nothing matters.

(2)   Second example; let us take N=1 and .Then𝑓(𝑥) = 𝑒−|𝑥|2

𝑓 ∈ 𝑆(ℝ𝑁).

So, this is a prototype of functions which are in the Schwarz space. So, in fact, all you have to

do is look at . So, in fact, this was proved in the very first lemma|𝑥|𝑘𝑒−|𝑥|2

→ 0 𝑎𝑠 |𝑥| → ∞

of this course.

What did we have to that we looked at . This was the lemma|𝑥|−𝑘𝑒−1/|𝑥|2

→ 0 𝑎𝑠 |𝑥| → 0

which we proved. So, that to prove the continuity of the function which is zero on the left and

which is equal to on the right. we wanted show that it was a C infinity function and𝑒−1/|𝑥|2

 

this is what we showed and this result is exactly the same as the result which we have here

and therefore, you have this belongs to us.
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So, now, we want to put a topology on S. Again we will content ourselves by saying what is a

convergent sequence. So,

in if for every polynomial and every differential operator{𝑓
𝑘
} → 0 𝑆(ℝ𝑁) 𝑃(𝑥) 𝐿

with constant coefficients the sequences converges to 0 uniformly on .{𝑃(𝑥)𝐿(𝑓
𝑘
(𝑥))}   ℝ𝑁

So, this is the…

So, a linear functional on of will be continuous if will be called continuous if it is𝑆(ℝ𝑁)

sequentially continuous. There is



.𝑇 ∈ 𝑆′(ℝ𝑁) ⇔ 𝑓
𝑘

→ 0 𝑖𝑛  𝑆(ℝ𝑁) ⇒ 𝑇(𝑓
𝑘
) → 0

So, this is the definition of a continuous linear function. So, now in linear so, this is true for

linear mappings also.

So, linear also for linear mappings from to a topological vector space, so we identify𝑆(ℝ𝑁)

continuity and sequential continuity in this case. So, if you look at , this is a subspaceƊ(ℝ𝑁)

of and that is of course, a subspace of these are all inclusion. Now, if𝑆(ℝ𝑁) Ɛ(ℝ𝑁)

something goes to zero and obviously, all the thenƊ(ℝ𝑁) 𝑃(𝑥)𝐷𝐿(𝑓 (𝑥)) ∈ 𝑃(𝑥)𝐿(𝑓
𝑘
(𝑥))

they will all go to 0 in and by the topology of and therefore, they will all goƊ(ℝ𝑁) Ɗ(ℝ𝑁)

uniformly all over the in k.

The fixate compact set which contains all the supports and in particular it goes in itself.ℝ𝑁   

So, is continuously embedded in the . And the is continuouslyƊ(ℝ𝑁)     𝑆(ℝ𝑁) 𝑆(ℝ𝑁)

embedded in because, all derivatives will all go to zero uniformly in itself, andƐ(ℝ𝑁) ℝ𝑁

therefore in every complex therefore, trivially we have these three inclusions.

Theorem: So, next theorem again it is obvious let , a polynomial,𝑓, 𝑔 ∈ 𝑆(ℝ𝑁) 𝑃(𝑥)

is  a differential operator with constant coefficients and any multi index.𝐿 α

Then . Further the map𝐷α𝑓,   𝑃(.)𝑓(.),  𝑃(.)𝐿(𝑓(.)),   𝑓𝑔 ∈ 𝑆(ℝ𝑁)

into itself. And these are all just𝑓 → 𝐿(𝑃(.)𝑓(.))  𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠   𝑓𝑟𝑜𝑚  𝑆(ℝ𝑁)

obvious statements coming from the definition. So, that is everything is just from the

definition.
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So, the first important result about the space,

Theorem: so theorem: is continuously included in . So, that we can𝑆(ℝ𝑁)    𝐿1(ℝ𝑁)

define the Fourier transform.

Proof: let . Take k any positive integer. Then there exists integer𝑓 ∈ 𝑆(ℝ𝑁) 𝑀
𝑘

> 0

such that

𝑠𝑢𝑝
𝑥∈ℝ𝑁 (1 + |𝑥|2)𝑘|𝑓(𝑥)| ≤ 𝑀

𝑘



This is characterization which we gave for the thing. Now, you choose. So, you will choose

this is true for all k. So, therefore, you  take 𝑘 > 𝑁
2

Then what do we know about this function is integrable on .φ(𝑥) = 1

(1+|𝑥|2 )𝑘
ℝ𝑁

Where is to solve because if you use so,

ℝ𝑁
∫ φ(𝑥)𝑑𝑥 = 𝐶

𝑁
0

∞

∫ 𝑟𝑁−1

(1+𝑟2)𝑘 𝑑𝑟 < ∞  𝑖𝑛   𝑘 > 𝑁
2

check. So, this is a elementary exercise in lab integration. So, if you write it in polar, so, this

is polar coordinates. So, therefore, this integral is finite. So, now, if you choose such a

, let us evaluate   𝑘 > 𝑁
2

ℝ𝑁
∫ |𝑓(𝑥)|𝑑𝑥 =

ℝ𝑁
∫ |𝑓(𝑥)|(1 + |𝑥|2)𝑘(1 + |𝑥|2)−𝑘 𝑑𝑥 ≤ 𝑀

𝑘
ℝ𝑁
∫ (1 + |𝑥|2)−𝑘𝑑𝑥 <+ ∞

So, you have ). 𝑓 ∈ 𝐿1(ℝ𝑁

so, this implies )  that Further norm so 𝑓 ∈ 𝐿1(ℝ𝑁

||𝑓||
1

≤ 𝐶 𝑠𝑢𝑝
𝑥∈ℝ𝑁 

(1 + |𝑥|2)𝑘|𝑓(𝑥)|

So, if 𝑓
𝑛

→ 0   𝑖𝑛 𝑆(ℝ𝑁) 𝑠𝑢𝑝
𝑥∈ℝ𝑁 

(1 + |𝑥|2)𝑘|𝑓
𝑛
(𝑥)| → 0

That is what we mean by the topology in It shaved all of these should go to zero𝑆(ℝ𝑁).

uniformly and that means the supremum or the L infinity norm goes to zero, this means

in⇒ 𝑓
𝑛

→ 0 𝐿1(ℝ𝑁 )

And therefore, the inclusion is continuous. So exercise



Exercise:   proof is continuously embedded in the .𝑆(ℝ𝑁) 𝐿𝑝(ℝ𝑁 ),  ∀1 < 𝑝 < ∞

So, it is true for all . p equals infinity is obvious, because everything goes to ∀1 < 𝑝 < ∞

zero uniformly that so, the topology is defined itself, and everything is bounded. And p=1 we

have just proved so prove it for .. You only have to choose this k appropriately1 < 𝑝 < ∞

and then do it. So, it is a very small and simple exercise.

So, the usefulness of the Schwarz space will now be shown, which we will do next is to show

that the stability of the Fourier transform. So, the Fourier transform behaves very well on the

Schwarz space and is very useful so that we will see next.


