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So, we need the following notion.



Definition: Let be an indexing set (it may be finite, countable or uncountable). A family of sets𝐼

where , is locally finite if , there exists a neighborhood of which{𝐸
𝑖
}

𝑖∈𝐼
 , 𝐸

𝑖
⊂ ℝ𝑁 ∀ 𝑥 ∈ℝ𝑁  𝑥

intersects only finitely many of the sets .𝐸
𝑖

We now state a theorem. I will not be proving this. The proof can be found in the appendix of the

book which I cited earlier; and it is a standard theorem which follows from the paracompactness

of the Euclidean space. Let me first state the theorem.

Theorem: Let be open and let where is open for all Then there existsΩ ⊂ℝ𝑁 Ω = ∪
𝑖∈𝐼 

Ω
𝑖
, Ω

𝑖
𝑖.

functions such that𝐶∞ {ϕ
𝑖
}

𝑖∈𝐼
 ,

(i) supp( ) for allϕ
𝑖

⊂ Ω
𝑖
, 𝑖.

(ii) the family supp is locally finite.{ (ϕ
𝑖
)}

𝑖∈𝐼

(iii) for all , for all0 ≤ ϕ
𝑖
(𝑥) ≤ 1, 𝑥 ∈ Ω 𝑖 ∈ 𝐼.

(iv) for all .
𝑖∈𝐼
∑ ϕ

𝑖
(𝑥) = 1, 𝑥 ∈ Ω

So, why do we call it a locally finite C infinity partition of unity? Of course all the functions are

functions and they are locally finite, because the supports of these functions are locally finite.𝐶∞

Now, the last condition needs some explanation; because I told you that can be a finite,𝐼

countable or uncountable set. So, how do we define the sum here?
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Now, for given , there exists a neighborhood which intersects only a finite number of the sets𝑥

supp . That means, for every , for at most finitely many and therefore the sum is(ϕ
𝑖
) 𝑥 ϕ

𝑖
(𝑥)≠ 0 𝑖

in fact a finite sum; because you have a neighborhood which will intersect the supports for

finitely many of these functions .ϕ
𝑖

So, for all those for which it does not intersect the supp , is automatically 0; and therefore,ϕ
𝑖
(𝑥)

you have that this is nonzero only for finitely many. And therefore, this sum makes sense and

therefore you can define it, and it is always equal to 1. And because you have taken the constant

function 1 and broken it up as a sum of functions, you call it as partition of unity. So, this𝐶∞ 𝐶∞

is  the meaning of the statement.

Now, we have a simple corollary.

Corollary: Let be open and be compact. Then such thatΩ ⊂ℝ𝑁 𝐾 ⊂ Ω ∃ ϕ ∈ 𝐷(Ω) ϕ ≡ 1,

on .𝐾

proof: By the separation properties of (i.e., and so on), we can find such thatℝ𝑁 𝑇
3
,  𝑇

4
  𝑈

and is open, is compact (i.e., is relatively compact).𝐾 ⊂𝑈 ⊂ 𝑈 ⊂ Ω 𝑈 𝑈 𝑈



Now we consider the following covering of omega, namely and . Here K is compact, so it𝑈 Ω\ 𝐾

is closed. Therefore is open. Also is open. So, together these two cover the whole set,Ω\ 𝐾 𝑈

so, the C infinity function partition of unity, well we do not have to worry about locally finite;

because we have only two sets, which is finite.

So, we can find functions satisfying

, supp , supp andϕ,  ψ ∈ 𝐶∞(Ω) (ϕ) ⊂ Ω ϕ + ψ ≡ 1.

This means that on , on . Further, supp and is compact.𝐾 ψ ≡ 0 ⇒ ϕ ≡ 1 𝐾 (ϕ) ⊂ 𝑈 ⊂ 𝑈 𝑈

Therefore, supp is also compact. Thus ; so, this proves the theorem.(ϕ) ϕ ∈ 𝐷(Ω)

As an exercise, you can try the following.
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Exercise: If you have and they are compact and disjoint, then there exists𝐾
1
,  𝐾

2
⊂ Ω

such that on , on and for allϕ ∈ 𝐷(Ω) ϕ ≡ 1 𝐾
1

ϕ ≡− 1 𝐾
2

− 1 ≤ ϕ(𝑥) ≤ 1, 𝑥 ∈ Ω.

One can use the last corollary to do this.



So, you see that the function space is very rich. Now, we want to put a topology on .𝐷(Ω) 𝐷(Ω)

And then we will take the dual, which will make it a topological vector space and then we will

take the dual space of that. So that is our next object.


