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The Fourier Transform:

So, we will now discuss the Fourier transform. We will first discuss this for functions on𝐿1 ℝ𝑁

then see how we can extend this to a certain class of distributions. We cannot do it for all



distributions. But there is a certain class where you can do it. So, henceforth we assume all

functions to be complex values up to now it did not matter.

But now, the Fourier transform is particularly adapted for complex valued functions. So,

Definition:

Let , the Fourier transform of f denoted by is defined by𝑓 ∈ 𝐿1(ℝ
𝑁

) 𝑓
^

, .𝑓
^
(ξ) =

ℝ𝑁
∫ 𝑒−2𝜋𝑖𝑥·ξ𝑓(𝑥)𝑑𝑥 ∀ ξ∈ ℝ𝑁

So, what is ?𝑥 · ξ   𝑥 · ξ =
𝑗=1

𝑁

∑ 𝑥
𝑗
ξ

𝑗
𝑖 = − 1 

So, we this is the complex i and therefore, I do not want to use it for the index as well. So, this is

the definition of the Fourier transform. So, to start with you have to check if it is well defined.

So, if I take

| 𝑓
^

(ξ)| ≤
ℝ𝑁
∫ |𝑓(𝑥)| 𝑑𝑥 <+ ∞

So, you have that the Fourier transform is well defined and in fact,

𝑓
^

∈ 𝐿∞(ℝ𝑁)

|| 𝑓 
^

||
∞

≤ ||𝑓||
1

So, simple application of the dominated convergence theorem implies is in fact continuous. I𝑓
^

will leave you to verify the details. So, you take

ξ
𝑛

→ ξ ⇒ 𝑓
^
(ξ

𝑛
) → 𝑓

^
(ξ)



erges to f hat of xi. So, this is just direct and simple application of the dominated convergence

theorem and you can do it as a very simple exercise.
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In fact, we have something much more which we will now prove,



Theorem: .  Then is uniformly continuous𝑓 ∈ 𝐿1(ℝ
𝑁

) 𝑓
^

proof: So, let arbitrary small positive quantity and then suchε > 0 𝑓 ∈ 𝐿1(ℝ
𝑁

) ⇒ ∃𝑅 > 0

that

,  because integral mod f is a convergent integral.
ℝ𝑁\𝐵(0,𝑅)

∫ 𝑓(𝑥)| |𝑑𝑥 < ε
4

Therefore, this is the tail of a convergent integral you are taking away a ball of radius R. So, as R

goes becomes bigger and bigger. What is remaining outside the ball? The integral will be smaller

and smaller is just the fact that what.𝑓 ∈ 𝐿1(ℝ
𝑁

)

Choose such that you have , because this is now a finiteη > 0 4𝜋𝑅η
𝐵(0,𝑅)

∫ 𝑓(𝑥)| |𝑑𝑥 < ε

quantity once R is fixed constant.

So, I can choose small enough such that you can bring it less. So, now, letη

and Then ifℎ| | < η ℎ∈ ℝ𝑁. 𝑦 ∈ ℝ𝑁

What do you have?

 𝑓
^
(𝑦 + ℎ) −  𝑓

^
(𝑦)| | =

ℝ𝑁
∫ 𝑓(𝑥)𝑒−2𝜋𝑖𝑥·𝑦(𝑒2𝜋𝑖𝑥.ℎ − 1)𝑑𝑥

|
|
|
|

|
|
|
|

≤
ℝ𝑁
∫ |𝑓(𝑥)||𝑒2𝜋𝑖𝑥.ℎ − 1|𝑑𝑥

=
ℝ𝑁
∫ |𝑓(𝑥)||𝑠𝑖𝑛 𝜋 𝑥. ℎ| 𝑑𝑥

So, now that is less than or equal to I am going to split the integral into two parts.



≤
ℝ𝑁\𝐵(0,𝑅)

∫ |𝑓(𝑥)| 𝑑𝑥 + 2𝜋𝑅η
𝐵(0,𝑅)

∫ |𝑓(𝑥)| |𝑥. ℎ| 𝑑𝑥 < ε/2 + ε/2 = ε

So, this proof, the uniform continuity of the Fourier transform.

(Refer Slide Time: 10:08)

So, the following proposition is very, theorem is very useful in all calculations involving the

Fourier transform.

Theorem:

So, let

. Then𝑓 ∈ 𝐿1(ℝ
𝑁

) 𝑦 ∈ ℝ𝑁 ∀ξ ∈ ℝ𝑁

(i)  (τ
𝑦
𝑓)

^
(ξ) =  𝑒−2𝑖π𝑦·ξ  𝑓

^
(ξ)



(ii) , τ
𝑦
(𝑓)

^
(ξ) = 𝐹

^
(ξ) 𝐹(𝑥) = 𝑒2𝑖π𝑥·𝑦𝑓(𝑥)

(iii)  Let λ > 0 𝑔(𝑥) = 𝑓( 𝑥
λ ).   𝑇ℎ𝑒𝑛 𝑔

^
(ξ) = λ𝑁𝑓

^
(λξ)

(iv)   Let 𝑓, 𝑔 ∈ 𝐿1(ℝ𝑁),  𝑡ℎ𝑒𝑛 

.𝑓 ⋆ 𝑔
^

(ξ) = 𝑓
^
(ξ) 𝑔

^
(ξ)

So, here they are dual t to each other. If you take the translation and then take the Fourier

transform, then you get multiplied by an exponential if you want to translate the Fourier

transform.

Then you have to first multiply the function with an exponential and then take the Fourier

transform. So, it is again the function. I can take the Fourier transform, this is a beautiful𝐿1

property, this is just So, the convolution product on taking the Fourier transform𝑓
^
(ξ) 𝑔

^
(ξ) .  

becomes the algebraic product. So, this convolution together with Fourier transform becomes a

very powerful tool in the study of partial differential equations, essentially, because of this

property.

Proof: So, (i), (ii), (iii) direct consequence of definition. So, it is an exercise to familiarize

yourself with the formula and all there.
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So, we will just proof (iv).

ℎ = 𝑓 ⋆ 𝑔 ∈ 𝐿1(ℝ𝑁)

ℎ
^
(ξ) =

ℝ𝑁
∫ 𝑒−2𝑖π𝑥·ξ  

ℝ𝑁
∫ 𝑓(𝑥 − 𝑦)𝑔(𝑦)𝑑𝑦 ( ) 𝑑𝑥



 =
ℝ𝑁
∫ 𝑔(𝑦)  

ℝ𝑁
∫ 𝑒−2𝑖π𝑥·ξ 𝑓(𝑥 − 𝑦) 𝑑𝑥 𝑑𝑦

=
ℝ𝑁
∫ 𝑒−2𝑖π𝑦·ξ  𝑔(𝑦)  

ℝ𝑁
∫ 𝑒−2𝑖π𝑥·ξ𝑓(𝑥 − 𝑦) 𝑑𝑥 ( )𝑑𝑦

=
ℝ𝑁
∫ 𝑒−2𝑖π𝑦·ξ  𝑔(𝑦)𝑑𝑦 𝑓

^
(ξ) = 𝑓

^
(ξ) 𝑔

^
(ξ)

So modules will all be an integrable function, and therefore, you can interchange the order of the

integration by Frobenius theorem. you just get the… So, this is a very useful property.
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So, now, let us conclude this section with an example.

Example:

So, let us take 𝑓(𝑥) = 𝑒− 𝑥| |2

,  𝑥 ∈ ℝ𝑁 𝑓 ∈ 𝐿1(ℝ𝑁)

and we want to compute this Fourier transform. So, this f belongs to in fact all So,𝑔 ∈ 𝐿1(ℝ𝑁)

let us first of all that . So,𝑁 = 1 𝑓(𝑥) = 𝑒−𝑥2

.



So, then what is

.𝑓
^
(ξ) =

−∞

+∞

∫ 𝑒−2𝜋𝑥ξ𝑓(𝑥)𝑑𝑥 =
−∞

+∞

∫ 𝑒−2𝜋𝑥ξ𝑒−𝑥2

𝑑𝑥 =
−∞

+∞

∫ 𝑒−𝜋2𝑥2

𝑒−(𝑥+𝑖π𝑥)2

𝑑𝑥

So, now, we have to evaluate this integral. So, we will use Cauchy theorem for contour integrals.

So, this is some -R this is +R and then this is the line and then you have this is the origin.− 𝑖πξ

So, you have this take this contour and you integrate efs this is . So, , , and .Γ Γ
1

Γ
2

Γ
3   

Γ
4

So, Γ =
𝑖=1

4

⋃ Γ
𝑖

and then you look at

0 =
Γ
∫ 𝑒−ξ2

𝑑ξ

and then you evaluate it around this contour let R tend to infinity and so on and then you will get

final e. So, I will leave the contour integration because anyway I will find the Fourier transform

by another method which is more elegant later on.

So, this contour the integral like you can do it as an exercise for yourself. So, you will get. So,

this will imply that

𝑓
^
(ξ) = π𝑒−π2ξ2

checked.

So, if so, then you have𝑁 > 1



𝑓
^
(ξ) =

ℝ𝑁
∫ 𝑒−2𝜋𝑖𝑥·ξ 𝑒− 𝑥| |2

𝑑𝑥

=
ℝ𝑁
∫ 𝑒

−
𝑗=1

𝑁

∑ (𝑥
𝑗
2+2𝜋𝑖𝑥

𝑗
ξ

𝑗
)
𝑑𝑥

=
𝑗=1

𝑁

∏ 𝑒
−π2ξ

𝑗
2

−∞

∞

∫ 𝑒
−

𝑗=1

𝑁

∑ (𝑥
𝑗

+𝑖𝑥
𝑗
ξ

𝑗
)2

𝑑𝑥
𝑗

= ( π)𝑁𝑒
−

𝑗=1

𝑁

∑ (𝜋2ξ
𝑗
2)

Consequently, you have that.

So, therefore,

𝑓
^
(ξ) = ( π)𝑁𝑒

−(𝜋2 ξ| |2)

So, you see , the Fourier transform looks very much the same; it is almost the same up to  𝑒−|𝑥|2

some scaling factors. And this is some kind of Eigen function for this operator. But anyway, that

is I am just a passing remark. So, we do not have to take it too seriously.

So, we will see, but we will derive this in a completely different way using the properties. So,

next properties is to. So, is taken to by the Fourier transform, we are we want to look at𝐿1 𝐿∞

some space which is stable under the Fourier transform. So, that we can use it to define some

function space which is stable under the Fourier transform.



That means, the function belongs to the space the Fourier transform also belongs to the space

and, once we identify that space, then we will see that we can extend the definition of the Fourier

transform to certain classes of distributions.


