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We will now discuss Fundamental Solutions. We are talking about solutions of differential

equations. So, let us take differential operators, so is a differential operator with let us say𝐿

constant coefficients,

𝐿 =
|α|≤𝑚

∑ 𝑎
α
𝐷α

so this is called a constant coefficient differential operator of order m.

So, are all constants if you are working with the complex numbers, so they are all𝑎
α

ℝ 𝑜𝑟 ℂ

constants, the usual derivatives partial derivatives and you are looking at all multi-indices𝐷α

of order less than or equal to m and therefore, this a constant coefficient differential operator.

So,



let 𝑆 ∈ 𝐷′(ℝ𝑁)

And we look for such that , so if it is a constant coefficient this well𝑇 ∈ 𝐷′(ℝ𝑁) 𝐿(𝑇) = 𝑆

defined because is well defined. So that means,𝐷α𝑇

|α|≤𝑚
∑ 𝑎

α
𝐷α𝑇 = 𝑆

so these are called distribution solutions of this differential equation.

In particular, if you take f to be a local integral function and you can take , then you𝑆 = 𝑇(𝑓)

will have the usual differential equation then 1 can look for all distribution solutions of this

equation and decide if these distributions come from functions or not, that is a different

investigation altogether.

So, while we saw in the beginning of this course, there are differential equations which you

cannot have classical solutions after a very short time, so now you have you can look for

solutions in the set of distributions.

So, particular case so 𝑆 = δ

so let us say , suppose S is of compact support that means . Then let us𝐿(𝐸) = δ 𝑆 ∈ Ɛ′(ℝ𝑁)

look at , so 𝑆 * 𝐸

𝐿(𝑆 * 𝐸) =
|α|≤𝑚

∑ 𝑎
α
𝐷α(𝑆 * 𝐸) =

|α|≤𝑚
∑ 𝑎

α
(𝑆 * 𝐷α𝐸) = 𝑆 * 𝐿(𝐸) = 𝑆 * δ = 𝑆

therefore, is a solution of this differential equation , or solution𝑆 * 𝐸 𝐿(𝑇) = 𝑆 𝑇 = 𝑆 * 𝐸 

of .𝐿(𝑇) = 𝑆



So, fundamental solutions can help you to find solutions of differential equations, they are the

building blocks for finding solutions and also they give us a lot of information we will see

that probably later about the solution itself, so given any solution you can from the

fundamental solution you can predict the behaviour of some of the solutions even though you

may or may not be able to solve.
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So, we saw a fundamental solution for L is distribution E such that , I have used a𝐿(𝐸) = δ 

and not the because the fundamental solution is not unique, satisfies𝑇 ∈ 𝐷′(ℝ𝑁) 𝐿(𝑇) = 0

then by linearity therefore you do not have uniqueness of the fundamental𝐿(𝑇 + 𝐸) = δ ,

solution, so let us take the first example, we have already seen this example.

So, example, so if you take then is a fundamental solution =heavy side function,𝐿 = 𝑑
𝑑𝑥  𝐻 𝐻

because we know the also we have because,𝑑𝐻
𝑑𝑥 = δ 𝑑(𝐻+𝐶)

𝑑𝑥 = δ, ∀ 𝐶 ∈ ℝ 𝑑(𝐶)
𝑑𝑥 = 0,   

the, so now we will look at the Laplace operator a very important operator in PDE theory

operator.

So,     Laplacian operator: ∆ =
𝑖=1

𝑁

∑ ꝺ2

ꝺ𝑥
𝑖
2



and we want to calculate the fundamental solution of the Laplace operator, so this is a good

example a good exercise in computing distribution derivatives verifying what is the

distribution, derivative, etc.
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So, Theorem: The function 𝑢(𝑥) = 1
2𝜋 𝑙𝑜𝑔|𝑥|

is a fundamental solution of the Laplace operator in , so we will prove this in several steps,ℝ2

so proof



step 1: First of all u is locally integral. Away from the origin is a nice continuous𝑙𝑜𝑔|𝑥|

function therefore, you have no problems, so only have to look at the integrability over a

compact set in a neighbourhood of omega.

So we want to consider integral
𝐵(0;𝑎)

∫ |𝑢(𝑥)|𝑑𝑥 =
𝐵(0;𝑎)

∫ 𝑙𝑜𝑔|𝑥|𝑑𝑥 =−
0

2𝜋

∫
0

𝑎

∫ 𝑟𝑙𝑜𝑔 𝑟𝑑𝑟𝑑θ

Now, if you convert this into, so let us take a to be less than 1 so that is nothing but𝑙𝑜𝑔|𝑥|

, so it is a negative number, so you have the modulus will be, minus log r is mod−  𝑙𝑜𝑔|𝑥|

log x because r is less than 1.

So ,  and then you have the which is coming from the polar coordinates, now|𝑥| = 𝑟 𝑟𝑑𝑟𝑑θ

𝑟𝑙𝑜𝑔𝑟 → 0  𝑎𝑠 𝑟 → ∞

and therefore, this function is a good function it is a nice continuous function and therefore,

this is finite, so this integral is finite. So, this defines this locally integral function and

therefore defines distribution.

So, Step 2: so the function u is harmonic in that means , so this is just aℝ2 − {0} ∆𝑢 = 0

routine check, so you take

𝑢(𝑥
1
, 𝑥

2
) = 1

4𝜋 𝑙𝑜𝑔(𝑥
1

2 + 𝑥
2

2)

because this root of and therefore, I take, so for x small am taking𝑥
1

2 + 𝑥
2

2 = 𝑟 = |𝑥|

this you have not, so it is not minus let us say it is just equal to this and therefore, you now

straightforward computation.

You just compute , and of the origin and you will find that it is a harmonic function∆𝑢 ꝺ2𝑢

ꝺ𝑥
𝑖
2

and actually you do not have to worry whether they are doing the distribution or classical

derivative, here the classical derivative will do but that happens to also be the distribution



derivative because you are talking of a very smooth function in the compliment of the origin

and therefore, you do not have to worry.

So, Step 3:   you have to show let so to showφ ∈ 𝐷(ℝ2)

ℝ2
∫ 𝑢∆φ𝑑𝑥 = φ(0)

so this is what we need to show. So, now, let us go ahead and do that.
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So, let , R>0,𝑠𝑢𝑝𝑝 φ ⊂ 𝐵(0, 𝑅)

which is compact, so it can be put in some big balls, so it is contained in . So,𝐵(0, 𝑅)

let 0 and you take0 < ε < 𝑅 Ω
ε

= {𝑥      |    0 < ε < |𝑥| < 𝑅}

is the annulus, so this is is the annulus. so you have the ball radius R and then you haveΩ
ε

the ball radius and therefore, this is omega epsilon.ε

Now,

ℝ2
∫ 𝑢∆φ𝑑𝑥 = (

Ω
ε

∫+
𝐵(0;ε)

∫ )𝑢∆φ𝑑𝑥

but since the Lebesgue integral u is locally integrable, therefore it is integrable on ,𝐵(0; ε)

is a C infinity function with compact support. So, is a integrable function and∆φ 𝑢∆φ

therefore, by the absolute continuity of the Lebesgue integral you have the

ε 0
lim
→ 𝐵(0;ε)

∫ 𝑢∆φ = 0



And therefore, you have that

ℝ2
∫ 𝑢∆φ𝑑𝑥 =

ε 0
lim
→ Ω

ε

∫ 𝑢∆φ𝑑𝑥

so this is the limit which we need to compute. So, let us compute that integral, so integral on

omega, so now

Ω
ε

∫ 𝑢∆φ𝑑𝑥 =
Ω

ε

∫ 𝑢(𝑥)∆φ(𝑥)𝑑𝑥

=
Ω

ε

∫ ∆𝑢(𝑥)φ(𝑥)𝑑𝑥 +
𝑆

𝑅

∫(𝑢 ꝺφ
ꝺ𝑟 − φ ꝺ𝑢

ꝺ𝑟 )𝑑𝑠 −
𝑆

ε

∫(𝑢 ꝺφ
ꝺ𝑟 − φ ꝺ𝑢

ꝺ𝑟 )𝑑𝑠

so I am going to use the everything is a smooth function is away does not contain theΩ
ε

origin, so u is a smooth function is a smooth function.∆φ

Therefore, we are going to use Green’s theorem which is the higher dimensional

generalisation of the integration by parts formula and therefore.

So, let us call this outer boundary as ,𝑆
𝑅

so and𝑆
𝑅

= {𝑥  |  |𝑥| = 𝑅} 𝑆
ε

= {𝑥  |  |𝑥| = ε}

So, you have these 2 surfaces and therefore circles, Now, I should write is a normal𝑢 ꝺφ
ꝺ𝑟

derivative, but the outer normal derivative is same as derivative in the radial direction where

the ball is concerned and went centred at the origin and then similarly, for the inner ball, you

will have

Now, by step 2, you delta u is harmonic, so this is equal to 0, so this integral disappears. Now

phi a C infinity function with compact support, so all its function and all the derivatives

vanish outside the compact set which is contained inside r, so on the ball of radius r all these



functions are 0 and therefore, this integral also disappears. So, you have this is equal to…

Now, I just have to write this one this is s .ε

So, I am going to write the integral on ds, S is the circle remember that , so the𝑑𝑠 = 𝑟𝑑θ

integral is nothing but , so that is the integral for ds, is the radius of the circle. So𝑑𝑠 = ε𝑑θ ε

you have

=− 1
2𝜋 ε 𝑙𝑜𝑔ε

0

2𝜋

∫ ꝺφ
ꝺ𝑟 (ε, θ)𝑑θ + 1

2𝜋 ε ε 𝑑
ꝺ𝑟 (𝑙𝑜𝑔𝑟)|

𝑟=0
0

2𝜋

∫ φ(ε, θ)𝑑θ

Now, independent of| ꝺφ
ꝺ𝑟 | ≤ 𝑀 ε

because, is C infinity functions with compact support and , so this wholeφ ε𝑙𝑜𝑔 ε → 0

integral here goes to 0, so now we are giving…ε → 0 
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So,

ε 0
lim
→ Ω

ε

∫ 𝑢∆φ 𝑑𝑥 =  1
2𝜋

0

2𝜋

∫ φ(ε, θ)𝑑θ



=
ε 0
lim
→

1
2𝜋

0

2𝜋

∫ [φ(ε, θ) − φ(0)]𝑑θ + φ(0)

so we just have to find this limit here now what do you know about this limit? Now

φ(ε, θ) − φ(0) → 0

in fact it goes to 0 uniformly but anyway it does not matter, it goes to 0 and

|φ(ε, θ) − φ(0)| ≤ 2||φ||
∞

and that is integrable, because it is a constant and you have a finite interval.

So by the dominated convergence theorem, you have that

ε 0
lim
→ Ω

ε

∫ 𝑢(𝑥)∆φ(𝑥)𝑑𝑥 = φ(0)

and this proves the theorem, because so that this integral lower

i.e.,
ℝ2
∫ 𝑢(𝑥)∆φ(𝑥)𝑑𝑥 = φ(0) = δ(φ) ⇒ ∆𝑢 = δ

so that is a fundamental solution to the equations.
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So, now what about if , so if ,𝑁 ≥ 3 𝑁 ≥ 3

then you have let α
𝑁

= 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 𝑢𝑛𝑖𝑡 𝑏𝑎𝑙𝑙 𝑖𝑛 ℝ𝑁 

and let ω
𝑁

= 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑛𝑖𝑡 𝑏𝑎𝑙𝑙 𝑖𝑛 ℝ𝑁

you know, that means n dimensional lebesgue measure of the unit ball, then we can show, so

fact is a very nice application of the Gauss divergence theorem,

α
𝑁

= 𝑁ω
𝑁

So, let us see when , you have and𝑁 = 2 α
2

= 2𝜋 ω
2

= 𝜋

, you have and𝑁 = 3 α
3

= 4𝜋 ω
3

= 4
3 𝜋

In fact, it is true for all this thing and what about

ω
𝑁

= 𝜋
𝑁
2

Γ( 𝑁
2 +1)

Γ = 𝐺𝑎𝑚𝑚𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

so we omit the details of this you can find it is a very interesting calculation, maybe we will

see later on.
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So, now we state the theorem, we will very rapidly prove it because we have more or less

done most of the work in the previous theorem,

Theorem: Let that means, the areas𝑁 ≥ 3,  α
𝑁

= 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 𝑢𝑛𝑖𝑡 𝑏𝑎𝑙𝑙 𝑖𝑛 ℝ𝑁

surface masseur of the unit sphere units, so let me call it unit sphere here also let me write,

then

is fundamental solution  of in𝑢(𝑥) = −1

(𝑁−2)α
𝑁

|𝑥|(𝑁−2) ∆ ℝ𝑁

so we will proof.

So, step 1:

u is locally integrable why is it, so you have if you again you only need to check in a

neighbourhood of origin, so

𝐵(0,𝑎)
∫ |𝑥|2−𝑁𝑑𝑥 = α

𝑁
0

𝑎

∫ 𝑟2−𝑁𝑟𝑁−1𝑑𝑟 = α
𝑁

𝑎2

2 <+ ∞



, so that which is finite.

So, this is just polar coordinates in n dimensions and we are using the further no in the

previous 1 we had we had a the came because that is the , because the𝑟𝑑θ 2𝜋 2𝜋 α
2

= 𝜋

integral again was the radial function we integrated out and you got the . Now, when the2𝜋

we wrote now, we are not writing the other part we have integrated it out and produced𝑑𝑟𝑑θ

it comes out as the surface measure of the unit ball.

Step 2:

is harmonic on , so all you have to do is if ,𝑢 ℝ𝑁 − {0} 𝑣 𝑖𝑠 𝑟𝑎𝑑𝑖𝑎𝑙 𝑣(𝑥) = 𝑣(|𝑥|) = 𝑣(𝑟)

so, then we have

∆𝑢 = ( ꝺ2𝑣

ꝺ𝑟2 + 𝑁−1
𝑟

ꝺ𝑣
ꝺ𝑟 )

so you just substitute and you calculate, so this will give you the delta of this function is 0 in

Rn minus origin.
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Step 3:



is the calculation which are going to go through rapidly, so φ ∈ 𝐷(ℝ𝑁)

ball centre origin radius R,𝑠𝑢𝑝𝑝(φ) ⊂ 𝐵(0, 𝑅)

Ω
ε

= {𝑥:  0 < ε < |𝑥| < 𝑅}

so you have the same thing and therefore,

ℝ𝑁
∫ 𝑢∆φ 𝑑𝑥 =

ε 0
lim
→ Ω

ε

∫ 𝑢∆φ 𝑑𝑥

Again I am going to use the green side entity and once more if I get that part will go∆𝑢φ

away to 0, because of the harmonic nature of u and therefore, you will have that is equal

Ω
ε

∫ 𝑢∆φ 𝑑𝑥 = 1
α

𝑁
(𝑁−2)

𝑆
ε

∫ ε2−𝑁 ꝺφ
ꝺ𝑟 − φ 𝑑(𝑟2−𝑁)

𝑑𝑟 |
𝑟=ε( )  𝑑σ(𝑥)

Again, this part will go to 0, why, because you have

 |
𝑆

ε

∫ ε2−𝑁 ꝺφ
ꝺ𝑟( )  𝑑σ(𝑥) | ≤ 𝑀ε𝑁−1ε2−𝑁α

𝑁
= 𝑀ε α

𝑁
→ 0

Therefore, you have that

    ℝ𝑁
∫ 𝑢∆φ 𝑑𝑥 =

ε 0
lim
→ Ω

ε

∫ 𝑢∆φ 𝑑𝑥 =
ε 0
lim
→

𝑁−2
α

𝑁
(𝑁−2)

1

ε𝑁−1  
𝑆

ε

∫ φ(ε, 𝑦) 𝑑σ(𝑦)  → φ(0)



And again this will be nothing but times integral over the unit ball, so when𝑑σ(𝑦) ε𝑁−1α
𝑁

you convert this to integral over the unit ball, you will get this will go and you canε𝑁−1

easily show that this goes to the usually add and subtract and you will get it.φ(0) φ(0)

So, this completes the proof, so you will try to do this calculation yourself, so this thing you

add and subtract 0 and then you will show that the whole thing can go to 0, so this is about

the fundamental solution of the Laplacian.
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So, now if you have, suppose you have want to solve

, f have compact support∆𝑢 = 𝑓

then we already saw fundamental solution star f is a solution, so in

, 𝑁 = 2 𝑢(𝑥) = 1
2𝜋

ℝ2
∫ 𝑙𝑜𝑔|𝑥 − 𝑦| 𝑓(𝑦) 𝑑𝑦

,𝑁 = 3 𝑢(𝑥) =− 1
4𝜋

ℝ3
∫ 𝑓(𝑦)

|𝑥−𝑦| 𝑑𝑦



You might have seen such formulae earlier when studying partial differential equations, in

particular the Laplace operator, so this comes from this thing. So, finally this it is not

necessary that f should have compact support; it is enough f has sufficiently good D-K

properties, so that this integral makes sense then also one can show that this is the solution.

Now, as an application of the Han Banach theorem, Malgrange and Ehrenpreis have shown

that every constant coefficient differential operator has a fundamental solution. So, this is

Malgrange and Ehrenpreis theorem for instance, you can find a proof en route in functional

analysis, so with that we will stop this discussion.


