Sobolev Space and Partial Differential Equations
Professor S Kesvan
Department of Mathematics
Institute of Mathematical Science
Convolution of Distribution — part 2
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So, we were looking at convolution of distributions, so the notations we were using,

@) =u-y), T DR ), @N@) =T ), T* () =TT ).

Now, the properties of this function are we proved, so we prove the following theorem:
o N N
Theorem: T €D'(R ), & € D(R ).

(1) forany x € R" , TX(T * 0) =rxT *o=T *‘[x(I).



(i) for all multi-index o D“(T * ¢) =DT * ¢ =T *D"¢p. In particular

T * ¢ € C*(RY).
(i) if y € DR ), T * (@ * W) = (T * &) * y.
(v)ifT * ¢ = 0, v € D(R" ), thenT = 0.
So, now it is clear thatif T € E '(RN and Y € E (RN ), then again we can define
T @) = T d).
Now, we have the following theorem which is analogue of the previous theorem:
Theorem: T €E'(R" ), ¢ € E(R" ).
(1) for any x € R" , Tx(T *¢) = TxT *o=T *qu).

(i) for all multi-index a, Da(T *P) = D°T * b=TF* D°‘¢. In particular

T* ¢ € E(RY.

(iii) if § € D(R" ), thenT * & € D(R" ), and
T*@*Y)=T*)*Y=T*Y)* ¢
So these are the three theorems.
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proof: (1) and (ii) are exactly as before as in preceding theorem, so we do not have to spend

time calling them, so now we only have to prove, so we are proving three now.

(iii) So, let us take K = supp(T), H = supp($p) — both compact.
SoT * ¢(x) = T(t,$), supp(t,$) © x — H.

Thus T * ¢(x) will vanishif (x — H) N K = &.

= supp(T * ¢) < supp(T) + supp(d) = K + H compact.

>T* & eDR").
So now we have to prove the other relation.

So, let us call that relation something, let me call it dagger. So, enough to prove dagger at the
origin for the x equals 0, after that you apply tau x operation and use the first part of the
theorem and therefore, you can push the tau anywhere and consequently if you can throw it at

the origin, you can prove it for any other point, so we want to just prove it at the origin.

Now, k plus H is compact and therefore, you can find psi naught in D of Rn, such that psi
naught chesh is equal to psi chesh in the neighbourhood of k plus H all you have to do is to

take a function in D of Rn which is one in the neighbourhood of k plus H and multiply psi



chesh with that function, so that will be equal to psi naught chesh call that psi naught chest
and therefore, psi naught chesh will be equal to psi chesh in a neighbourhood of k plus H, so

this is just multiplying by a cut off function and therefore, you can do it.

Now, supp(T * ¢)c K + H. So we have

T*($* WO = [ T* dW(- y)dy.

K+H

= [ T* oY, (- »)dy.

K+H
= ((T* ¢ *w)O) = (T *w) * $)(0).

You play commutativity so you get psi naught star phi and then again you can push the psi
naught inside because both functions are in C infinity with compact support, so this is equal
to T star psi not star phi evaluated at 0. So, just think about it I have used commutativity and
associativity as per the previous theorem, then commutativity of the convolution in the
previous for C infinity functions and then I have again used the associativity of the previous

theorem, because both these functions are in C infinity with compact support.
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So,now if — s € H, TSIIJV = TsLlJOV in a nbd of K.

T*L|J=T*L|J00nH.

(T* W) *d)O0) = [ T* (= »nNddy = [ T *y (- »()dy

K+H K+H
= ((T ") * $)(0)
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So,letp € D(]RN ) be arbitrary.
(T ) *W*b=(T*d)*)* ¢ =(T*d)* d) * V.

= (T* (@ * W) *o.
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So, now for all phi tilde these two are equal, so by (iv) of previous theorem, we get
T*P)*y=T% (" V).
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So, now let S and T be two distributions on R one of them at least with compact support, so
we can define the convolution of two functions one C infinity, one C infinity with compact

support or continuous with compact support. Similarly, two distributions we are going to find

the convolution when at least one of them has compact support.



So, let us take ¢ € D(]RN) so S has compact support let us assume then, this means that

S* o€ D(]RN) by the proceeding theorem and so we can define T * (S * ¢).
Therefore, T * (S * ¢) is always well defined, so let us take

L:D(RY - ER")

L($) =T * (S * ¢), V¢ € D(R").

x €R", ¢ € D(R"), T L = Lt

Now, consider the linear functional ¢ — L((T))(O) =T*(S* cl)v) (0).
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So, let ¢ —0inD(R"). Then S* ¢ —0inER') and S* ¢ —0inDR") if

€ E'(RY.

=>¢ - L(&;) (0) is continuous linear functional.

= Define, T* S € D'(RN) by



T * S(d) = (T * (S * $))(0).

N
So,now let x ER .

Now

(T * (S * ¢ = L@ = (_L$))(O0) = (L(t_$))O) = (T * H((t_)")

=(T* 5)(Tx<l>)v = (T *35)* ).

ST*ES*)=(T"*S)* ¢
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So, let S, T € D'(]RN), at least one of them has cpt support, then T * S is the unique

distribution which satisfies the following equivalent conditions.
T*($S*¢)=(T*S)* ¢.

T * S(4) = (T * (S * $))(0).

So, it just types from those calculations here so, this defines.



