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In this video, we shall see a short and brief development of Multiple Riemann Integration. All

the hard work has been done way back and real analysis I, when we studied the Riemann

integral in terms of upper sums and lower sums. The theory in several dimensions is not that

different. We begin with the definition.

Definition; Let I 1 dot dot dot I n be intervals in R. So, these intervals I 1 to I n could be open,

close, bounded, unbounded, half open, half close it really does not matter, they could even be



points we even allow that. So, let I 1 to I n be intervals in R. A n dimensional interval in R n

is the product of I 1 dot dot dot I n.

So, a n dimensional interval is nothing, but a product of intervals in R. We say the

n-dimensional interval I is open respectively, closed, bounded if each I j has the same

property; has the same property, ok. So, we consider n dimensional intervals which are just

products of intervals in R.

So, as an interesting and simple exercise. Show that an n dimensional interval I is compact if

and only if each I j is compact. This is actually a trivial exercise and it follows rather

immediately from the theory of compact as we have developed elaborately for metric spaces

ok.
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So, given So, another definition this is the important definition of measure of an interval. So,

henceforth for the sake of brevity I will not keep saying n dimensional interval I will just say

interval I and leave it to you to infer from context, whether it is an interval in R or a general n

dimensional interval. 

Given an interval, I equal to I 1 cross dot dot dot I n, we define the measure of I mu I to be as

you can guess mu of I 1 into mu of I 2 into dot dot dot mu of I n, where mu of I J is just the

length of the interval, length of the interval. Since we allow intervals to degenerate to single

points and also allow in finite length intervals this product could be 0, this product could be

in finite as well. 

Note that if one of the intervals is a single point, but another interval is an interval of length

infinity, then the product interval will still have measures 0. According to this definition that

sort of makes sense, because what will happen is if one of the intervals degenerate to a point

when you take the product you do not get an n dimensional object. You get sort of a lower

dimensional object. So, defining the measure of such a lower dimensional object to be 0

makes perfect sense ok.

So, we have now defined what the measure or length of a general n dimensional interval is.

Once this is done the definition of a Riemann integral is rather simple. So, we will all have

some more sequence of definitions, some more definitions. Definition; let I equal to I 1 dot

dot dot I n be an open interval, ok sorry let I 1 to I n be any interval it does not matter be an

interval. 

A partition of I is just a product P 1 cross dot dot dot P n, where P j is a partition of I j. So, a

partition of an n-dimensional interval is nothing more than a product of partitions of the

intervals in R. So, a simple picture will illustrate what is going on. Suppose we are taking a

two-dimensional interval that is just a product of two intervals.
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So, in general it will look like a rectangle. So, a partition is just given by a product of

partitions of the two interval. So, let us take a partition P 1 of the interval, which I have drawn

on the x axis. And another partition, which is there on the y axis. Then together you take the

product. So; that means, of course, the endpoints are always there in the partition.

So, what will happen is you will consider a sort of grid like this, when you take the partition,

when you take the product of the partitions you get something like this. These are all the

points that will be there in the partition. So, yeah to prevent you from going to sleep I will not

complete this picture.



So, note that each of these partitions in each one of these axis determines some sub intervals.

So, you have these sub-intervals determined by this and sub intervals determined by this ok.

And the product of those would give you sort of smaller rectangles like this.
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So, that I can draw. So, you will have sort of rectangles determined by this partition. So, let

me make a remark, each partition of an interval such that, P j has m j points. That is I am

writing the partition P as the product P 1 cross dot dot dot P n, where each P j is a partition of

I j. Assume that P j as m j points, then the partition P determines m 1, m 2 dot dot dot m j

intervals or rather sub intervals of I.

So, if you have a partition P write it as a product P 1 cross dot dot dot P n. If P j contains m j

points, then there are m 1 times m 2 times dot dot dot, sorry this is not m j this is m n, this is



m n sub intervals determined by this partition. So, each sub interval will be determined in the

way we have defined in this picture ok.
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Now, usually what we will do is we will just, we will label these sub intervals by A 1 dot dot

dot A m, where m is just m 1, m 2 dot dot dot m n ok. So, now that we have defined what it

means for a partition to determine sub intervals we can move on to the next step and define

the Riemann integral. Definition; let I be a compact interval, ok. Let F from I to R be a

bounded function.

For any partition P, we say an expression of the type summation j running from 1 to m mu of

A j times F of t j, where A 1 to A m are the sub intervals determined by P sub intervals

determined by P. And t j is some point in A j. An expression of the type summation j running



from 1 to m mu of A j F of t j, where these A j’s are the various sub intervals that are

determined by the partition so, each A j for instance in this case this can be A 1, A 2, A 3. 

You ordered them in some way it really does not matter, there will be finitely many of them.

You order them in some they call them A j’s you take the measure of A j and multiply it by F

of t j, where t j is some point.

(Refer Slide Time: 11:45)

So, an expression of this type is called a Riemann sum. So, a Riemann sum is just, you

consider a partition you sample points from each sub interval determined by the partition.

Evaluate the given function at that particular set of points and then multiply it by the

corresponding measure of the sub intervals and take the sum. That is called the Riemann sum

ok, it is called a Riemann sum.



We say F is Riemann integrable on I if we can find if we can find a number capital A, such

that for each epsilon greater than 0, there is a partition P epsilon satisfying the following

somewhat complicated looking condition, for any finer partition P. So, finer partition just

means this partition P contains P epsilon ok.

So, you have essentially added more points to each one of the sub intervals, not each one of

the sub intervals you have added more points to each one of the P j’s determined by P epsilon.

So, for any finer partition P, we have the Riemann sum the Riemann sum coming from P to

be less than epsilon.

So, there is a lot unpack here. Let us do in an effort to make our understanding clear what we

can do is we can introduce some notation. Usually notation seems to overburden things, but

sometimes having a clean notation can make us understand what is going on. So, let us give

an expression for this. We will call this the Riemann sum so we let us call it S F P. And since

this Riemann sum depends on the choice of points, we can call it t 1 to t m ok. Let us give it

this notation.

So, here the understanding is that you take the sum of the products of the intervals with the

values of F at these various points in the final slot ok. So, that is the notation here. What this

is saying is, for any partition P we have the Riemann sum coming from P to be less than

epsilon that just means S P F t 1 to t m is less than epsilon for any choice for any choice of t j

in A j ok.

So, what this is saying is no matter how you sample the points in the sub intervals the

Riemann sum always turns out to be sorry I made a mistake, what I want to say is I

completely forgot the integral value minus A is less than epsilon ok. So, what I want to say is,

given any finer partition P of this P epsilon, no matter how you sample the points t 1 to t m

from this partition P. When you take the Riemann sum with respect to that choice of points,

the absolute value of that minus A is less than epsilon ok. 

Then we say that F is Riemann integrable on A on I and we say integral of I F is equal to A.
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So, the Riemann integral in several variables exist, if you can make the values of Riemann

sums arbitrarily close to a particular value, which we have called A ok. So, there is really

nothing much happening you would have seen a similar definition of the Riemann integral in

a standard course on Real Analysis, or at least you would have seen it equivalent definition in

terms of upper sums and lower sums.

So, let me just leave you with somewhat elaborate exercise that will really test your

understanding of basic analysis. So, this I am going to call it a theorem, but it is actually an

exercise for you to work out. This will really test your understanding. So, let I be a compact

interval be a compact interval.

Let F from I to R be a function. For any partition P of I define U F P to be summation capital

M I mu of A I, where A 1 to A m so, let I run from 1 to m. A 1 to A m are the sub intervals



determined by P sub intervals determined by P. And capital M i is supremum of F on A i ok.

So, this is called the upper sum. The Riemann upper sum or rather the Darboux upper sum

Darboux upper sum ok.
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Similarly, define L F P, their Darboux lower sum I am going to leave it to you to define L F P,

its exactly like what we did in Real analysis I, ok. Then F is Riemann integrable if and only if

for each epsilon greater than 0 we can find a partition P, such that U F P minus L F P is less

than epsilon.

So, you would if you are that sort of student who has a very good memory you will remember

that we proved that a function F in the real line or defined on a compact interval in a real line

is integrable if and only if this is true. However, there we are defined the notion of Riemann

integrability also in terms of upper sums and lower sums.



In fact, what we do is we take the infimum of all upper sums very infimies over every

possible partition and you take the supremum of all lower sums, where you take the

supremum over all possible partitions. And you say the function F is Riemann integrable if

and only if the supremum of the lower sums agree with the infimum of the upper sums.

So, there the definition was slightly different, here the definition is in terms of choosing

points from each sub interval sampling points and sort of considering the product of the

measure and the value at that point. So, there is a subtle difference between the earlier result

in one-dimension and the result we have here.

Nevertheless, this exercise requires a bit of work, but it is really going to reinforce your

understanding of this entire course Real analysis I and Real analysis II. So, I want you to work

out this exercise in detail please refer to Real analysis I to get some ideas of how to tackle this

ok.

So, the final thing I want to say about multiple Riemann integration is another theorem, which

is not that hard to show, all the hard work has been done in Real analysis I. This is sort of the

Riemann Lebesque criteria for integrability ok. So, let F from I to R be a bounded function be

a bounded function, then F is Riemann integrable of course, here I is a compact interval F is

Riemann integrable if and only if the set of discontinuities of F is a set of measure 0. What do

I mean by a set of measures 0?
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Well that is the final definition of this video. Definition a set S subset of R n is said to be a set

of measure 0 0, if for each epsilon greater than 0 we can cover we can cover S by countably

many intervals, whose net measure whose net measure is less than epsilon.

Just as before you can show that any function sorry any set, which is countable is going to be

a set of measures 0 and you can also show this interesting exercise, which is related to the

remark I made before, if I equal to I 1 to I n and some I j is a point then I is a set of measure 0,

you can try to show this ok.

So, a set of measures 0 is something that can be covered by sets such that, the net measure of

those sets is going to be less than epsilon and these sets have to be intervals, because we have

defined measure only for intervals so far. So, this was a brief overview of multiple Riemann

integration. In the next and final video of the course we will have a brief overview of multiple



Lebesque integration. This is a course on Real Analysis and you have just watched the video

on Multiple Reimann Integration.


